1) a) The domain of this problem is $[0,20]$

$$
\begin{aligned}
& x+y=20 \Rightarrow y=20-x \quad S=x^{2}+(20-x)^{2}=2 x^{2}-40 x+400 \\
& S^{\prime}=4 x-40 \quad 4 x-40=0 \Rightarrow x=10 \quad S^{\prime \prime}=4
\end{aligned}
$$

By the second derivative test, we have a minimum value for the sum of the squares when the two numbers are 10 and 10 (the sum is 200). We have a maximum at the endpoints of the domain, where the numbers are 0 and 20 (and the sum is 400).

1) b) The domain of this problem is $[0,20]$

$$
\begin{aligned}
& x+y=20 \Rightarrow y=20-x \quad S=\sqrt{x}+20-x \\
& S^{\prime}=\frac{1}{2 \sqrt{x}}-1=\frac{1-2 \sqrt{x}}{2 \sqrt{x}} \quad 1-2 \sqrt{x}=0 \Rightarrow x=\frac{1}{4} \quad S^{\prime \prime}=-\frac{1}{4 \sqrt{x^{3}}}
\end{aligned}
$$

By the second derivative test, we have a maximum value for the sum of the square root of one number and the other occurs when the two numbers are $1 / 4$ and $79 / 4$ (the sum is $81 / 4$). We have a minimum at the endpoints of the domain, where the numbers are 0 and 20 (and the sum is $\sqrt{20}$).

2) Domain of the function is $(0,5)$

$$
\begin{aligned}
& x^{2}+y^{2}=25 \Rightarrow y=\sqrt{25-x^{2}} \\
& A=\frac{1}{2} x \sqrt{25-x^{2}} \quad A^{\prime}=\frac{1}{2} x\left(\frac{1}{2}\left(25-x^{2}\right)^{-1 / 2}(-2 x)\right)+\frac{1}{2} \sqrt{25-x^{2}}=\frac{-x^{2}+25-x^{2}}{2 \sqrt{25-x^{2}}}=\frac{25-2 x^{2}}{2 \sqrt{25-x^{2}}} \\
& 25-2 x^{2}=0 \Rightarrow x=\sqrt{\frac{25}{2}}=\frac{\sqrt{50}}{2} \approx 3.536 \quad y=\sqrt{\frac{25}{2}} \approx 3.536 \\
& A^{\prime \prime}=\frac{2 \sqrt{25-x^{2}}(-4 x)-\left(25-2 x^{2}\right)\left(\left(25-x^{2}\right)^{-1 / 2}(-2 x)\right)}{4\left(25-x^{2}\right)}=\frac{-8 x\left(25-x^{2}\right)+4 x\left(25-x^{2}\right)}{4\left(25-x^{2}\right)^{3 / 2}}=\frac{x^{3}-25 x}{\left(25-x^{2}\right)^{3 / 2}} \\
& A^{\prime \prime}\left(\sqrt{\frac{25}{2}}\right)=\frac{\frac{25}{2} \sqrt{\frac{25}{2}}-25 \sqrt{\frac{25}{2}}}{\left(25-\frac{25}{2}\right)^{3 / 2}}<0
\end{aligned}
$$

Since $A^{\prime \prime}<0$, the value for x must be a maximum by the $2^{\text {nd }}$ derivative test.

3)

$$
\begin{aligned}
& l w=16 \Rightarrow w=\frac{16}{l} \quad P=2 l+2 w=2 l+\frac{32}{l} \quad P^{\prime}=2-\frac{32}{l^{2}} \quad P^{\prime \prime}=\frac{64}{l^{3}} \\
& 2-\frac{32}{l^{2}}=0 \Rightarrow l^{2}=16 \Rightarrow l=4 \quad P^{\prime \prime}(4)>0
\end{aligned}
$$

Since $P^{\prime \prime}<0$, the value gives a minimum for the perimeter by the $2^{\text {nd }}$ derivative test.

[-1,17] by [10,50]
4) Domain of the function is $(0,4)$
$2 l+2 w=8 \Rightarrow w=4-l \quad A=l(4-l)=4 l-l^{2} \quad A^{\prime}=4-2 l \quad A^{\prime \prime}=-2$
$4-2 l=0 \Rightarrow l=2 \Rightarrow w=2$
Since the $2^{\text {nd }}$ derivative is less than zero, $l=w=2$ is a maximum value, so the square with sides of 2 m would be the rectangle with the largest area of all rectangles with a perimeter of 8 m .

$[-1,5]$ by $[-1,5]$
5) a) $P(x, 1-x)$
b) $A=2 x(1-x)=2 x-2 x^{2}$
c) $A^{\prime}=2-4 x \quad A^{\prime \prime}=-4 \quad 2-4 x=0 \Rightarrow x=\frac{1}{2}$. By the $2^{\text {nd }}$ derivative test, this value must be a maximum.

The largest area that the rectangle can have is $1 / 2$, the dimensions of the rectangle are 1 unit by $1 / 2$ unit.

$[-1,3]$ by $[-1,2]$
6)
$A=2 x\left(12-x^{2}\right)=24 x-2 x^{3} \quad A^{\prime}=24-6 x^{2} \quad A^{\prime \prime}=-12 x$
$24-6 x^{2}=0 \Rightarrow x=2$
The $2^{\text {nd }}$ derivative test shows that this value must be a maximum. The dimensions of the rectangle of greatest area are 4 units by 8 units, and thus the largest area is 32 square units.

7)
$v=(8-2 x)(15-2 x) x=120 x-46 x^{2}+4 x^{3} \quad A^{\prime}=120-92 x+12 x^{2} \quad A^{\prime \prime}=-92+24 x$
$12 x^{2}-92 x+120=0 \Rightarrow 4\left(3 x^{2}-23 x+30\right)=0 \Rightarrow 4(3 x-5)(x-6) \Rightarrow x=6, \frac{5}{3}$
6 is an impossible value for $x . A^{\prime \prime}<0$ for $x=\frac{5}{3}$, so by the $2^{\text {nd }}$ derivative test this must be a maximum value.
The dimensions for the maximum volume would be $\frac{5}{3}$ in $\times \frac{14}{3}$ in $\times \frac{35}{3}$ in, and the maximum volume is $\frac{2450}{27} \mathrm{in}^{3}$

$[-1,5]$ by $[-5,100]$
8)

$$
\begin{aligned}
& a^{2}+b^{2}=20^{2} \Rightarrow b=\sqrt{400-a^{2}} \\
& A=\frac{1}{2} a \sqrt{400-a^{2}} \quad A^{\prime}=\frac{1}{2} a\left(\frac{1}{2}\left(400-a^{2}\right)^{-1 / 2}(-2 a)\right)+\frac{1}{2} \sqrt{400-a^{2}}=\frac{-a^{2}+400-a^{2}}{2 \sqrt{400-a^{2}}}=\frac{400-2 a^{2}}{2 \sqrt{400-a^{2}}} \\
& 400-2 a^{2}=0 \Rightarrow a=\sqrt{\frac{400}{2}}=10 \sqrt{2} \approx 14.142 \quad b=\sqrt{\frac{400}{2}}=10 \sqrt{2} \approx 14.142 \\
& A^{\prime \prime}=\frac{2 \sqrt{400-a^{2}}(-4 a)-\left(400-2 a^{2}\right)\left(\left(400-a^{2}\right)^{-1 / 2}(-2 a)\right)}{4\left(400-a^{2}\right)}=\frac{-8 a\left(400-a^{2}\right)+4 a\left(400-a^{2}\right)}{4\left(400-a^{2}\right)^{3 / 2}}=\frac{a^{3}-400 a}{\left(400-a^{2}\right)^{3 / 2}} \\
& A^{\prime \prime}(10 \sqrt{2})<0
\end{aligned}
$$

$[-2,22]$ by $[-10,110]$
9)
$2 x+y=800 \Rightarrow y=800-2 x$
$A=x y=x(800-2 x)=800 x-2 x^{2} \quad A^{\prime}=800-4 x \quad A^{\prime \prime}=-4$
$800-4 x=0 \Rightarrow x=200 \quad y=800-400=400$
By the $2^{\text {nd }}$ derivative test, this value is a maximum.
The largest area that can be enclosed is $80,000 \mathrm{~m}^{2}$, with dimensions 200 m (perpendicular to the river) by 400 m (parallel to the river)

$[-10,410]$ by $[-10,81000]$
10)

$$
x y=216 \Rightarrow y=\frac{216}{x}
$$

$P=3 x+2 y=3 x+\frac{432}{x} \quad P^{\prime}=3-\frac{432}{x^{2}} \quad P^{\prime \prime}=\frac{864}{x^{3}}$
$3-\frac{432}{x^{2}}=0 \Rightarrow x^{2}=144 \Rightarrow x=12 \quad y=\frac{216}{12}=18$
By the $2^{\text {nd }}$ derivative test, this value is a minimum.
The minimum fencing needed will be 72 m , making a 12 m by 18 m rectangle with a 12 m divider.

$[-10,50]$ by $[-10,200]$
11)
$V=l w h=l^{2} h \quad 500=l^{2} h \Rightarrow h=\frac{500}{l^{2}}$
$S A=l^{2}+4 l h=l^{2}+4 l\left(\frac{500}{l^{2}}\right)=l^{2}+\frac{2000}{l} \quad S A^{\prime}=2 l-\frac{2000}{l^{2}} \quad S A^{\prime \prime}=2+\frac{2000}{l^{3}}$
$2 l-\frac{2000}{l^{2}}=0 \Rightarrow l^{3}=1000 \Rightarrow l=10$
By the $2^{\text {nd }}$ derivative test, this value is a minimum.
The dimensions that will make the tank weigh as little as possible (least surface area) is 10 ft by 10 ft (on the base) by 5 ft high.
12)
$V=l w h=x^{2} y \quad 1125=x^{2} y \Rightarrow y=\frac{1125}{x^{2}}$
$c=5 x^{2}+30 x y=5 x^{2}+30 x\left(\frac{1125}{x^{2}}\right)=5 x^{2}+\frac{33750}{x}$
$c^{\prime}=10 x-\frac{33750}{x^{2}} \quad c^{\prime \prime}=10+\frac{33750}{x^{3}}$
$10 x-\frac{33750}{x^{2}}=0 \Rightarrow x=15 \quad y=\frac{1125}{15^{2}}=5$
By the $2^{\text {nd }}$ derivative test, the value is a minimum
The dimensions of the tank that will minimize the total cost is 15 ft by 15 ft (the base) by a height of 5 ft .
13) Call the dimensions of the printed area x for width and y for height.
$x y=50 \Rightarrow y=\frac{50}{x} \quad$ With margins : width $=x+4$, height $=y+8$
$A=(x+4)(y+8)=(x+4)\left(\frac{50}{x}+8\right)=50+8 x+\frac{200}{x}+32=82+8 x+\frac{200}{x}$
$A^{\prime}=8-\frac{200}{x^{2}} \quad A^{\prime \prime}=\frac{400}{x^{3}} \quad 8-\frac{200}{x^{2}}=0 \Rightarrow x^{2}=25 \Rightarrow x=5$
By the $2^{\text {nd }}$ derivative test, this value is a minimum.
The dimensions that minimize the amount of paper used are 9 inches wide by 18 inches high.
14) a) $v=-32 t+96 \quad v(0)=96 \mathrm{ft} / \mathrm{sec}$
b) $-32 t+96=0 \Rightarrow t=3$ seconds after it starts, $s=-16\left(3^{2}\right)+96(3)+112=256 \mathrm{ft}$.
c) $-16 t^{2}+96 t+112=0 \Rightarrow-16\left(t^{2}-6 t-7\right)=0 \Rightarrow-16(t-7)(t+1)=0 \Rightarrow t=-1,7$

Disregard $t=-1$. At $t=7, v(7)=-32(7)+96=-128 \mathrm{ft} / \mathrm{sec}$
15)
$A=\frac{1}{2} a b \sin \theta \quad \frac{d A}{d \theta}=\frac{1}{2} a b \cos \theta \quad \frac{d^{2} A}{d \theta^{2}}=-\frac{1}{2} a b \sin \theta$
$\frac{1}{2} a b \cos \theta=0 \Rightarrow \cos \theta=0 \Rightarrow \theta=\frac{\pi}{2}$
By the $2^{\text {nd }}$ derivative test, this value is a maximum.
16)
$V=\pi r^{2} h \quad 1000=\pi r^{2} h \Rightarrow h=\frac{1000}{\pi r^{2}}$
$S A=2 \pi r h+\pi r^{2}=\frac{2000}{r}+\pi r^{2} \quad S A^{\prime}=2 \pi r-\frac{2000}{r^{2}} \quad S A^{\prime \prime}=2 \pi+\frac{4000}{r^{3}}$
$2 \pi r-\frac{2000}{r^{2}}=0 \Rightarrow \pi r^{3}=1000 \Rightarrow r=\frac{10}{\sqrt[3]{\pi}} \approx 6.83$
By the $2^{\text {nd }}$ derivative test, this value will be a minimum.
17)
$V=\pi r^{2} h \Rightarrow 1000=\pi r^{2} h \Rightarrow h=\frac{1000}{\pi r^{2}}$
$S A=8 r^{2}+2 \pi r h=8 r^{2}+\frac{2000}{r} \quad S A^{\prime}=16 r-\frac{2000}{r^{2}} \quad S A^{\prime \prime}=16+\frac{2000}{r^{3}}$
$16 r-\frac{2000}{r^{2}}=0 \Rightarrow 16 r^{3}=2000 \Rightarrow r=5 \quad h=\frac{1000}{\pi(25)}=\frac{40}{\pi}$
40
$\frac{h}{r}=\frac{\bar{\pi}}{5}=\frac{8}{\pi}$, so the ration is $\frac{8}{\pi}$ to 1.
18) a) $V=(7.5-x)(10-2 x) x=75 x-25 x^{2}+2 x^{3}$
b) Domain: $(0,5)$

$[-1,6]$ by $[-5,75]$
c) Maximum volume is 66.019 in 3 when $x \approx 1.962$
d) $V^{\prime}=75-50 x+6 x^{2} \quad 75-50 x+6 x^{2}=0 \Rightarrow x=\frac{50 \pm \sqrt{700}}{12} \approx 1.962$ or 6.371 (6.371 is out of the domain)
19) a) $V=2(18-2 x)(24-2 x) x=864 x-168 x^{2}+8 x^{3}$
b) Domain $(0,9)$

$[-1,10]$ by $[-100,1500]$
c) 1309.632 in 3 when $x=3.456$
d) $V^{\prime}=864-336 x+24 x^{2} \quad 864-336 x+24 x^{2}=0 \Rightarrow x \approx 3.394,10.606$. Disregard 10.606 (out of domain)
e) $1120=864 x-168 x^{2}+8 x^{3} \Rightarrow x=2,5,14$. Disregard 14 (out of domain)
20)
$T=\frac{\sqrt{x^{2}+4}}{2}+\frac{6-x}{5}=\frac{1}{2} \sqrt{x^{2}+4}-\frac{1}{5} x+\frac{6}{5}$
$T^{\prime}=\frac{1}{4}\left(x^{2}+4\right)^{-1 / 2}(2 x)-\frac{1}{5}=\frac{x}{2 \sqrt{x^{2}+4}}-\frac{1}{5}=\frac{5 x-2 \sqrt{x^{2}+4}}{10 \sqrt{x^{2}+4}}$
$\frac{5 x-2 \sqrt{x^{2}+4}}{10 \sqrt{x^{2}+4}}=0 \Rightarrow 5 x-2 \sqrt{x^{2}+4}=0 \Rightarrow \sqrt{x^{2}+4}=\frac{5 x}{2} \Rightarrow x^{2}+4=\frac{25 x^{2}}{4} \Rightarrow 21 x^{2}=16 \Rightarrow x=\frac{4}{\sqrt{21}} \approx 0.873$
21)
$A=2 x(4 \cos (0.5 x))=8 x \cos (0.5 x)$
$A^{\prime}=8 x(-\sin (0.5 x))(0.5)+8 \cos (0.5 x)=8 \cos (0.5 x)-4 x \sin (0.5 x)$
$A^{\prime \prime}=-8 \sin (0.5 x)[0.5]-4 x \cos (0.5 x)-4 \sin (0.5 x)=-4 x \cos (0.5 x)-8 \sin (0.5 x)$
$8 \cos (0.5 x)-4 x \sin (0.5 x)=0 \Rightarrow x \approx 1.721$
The $2^{\text {nd }}$ derivative test shows that this value is a maximum.
The dimensions of the rectangle with the largest area are 3.442 by 2.608 , the maximum area is approx. 8.977.
22)
$r^{2}+(0.5 h)^{2}=10^{2} \Rightarrow r^{2}+0.25 h^{2}=100 \Rightarrow r^{2}=100-0.25 h^{2}$
$V=\pi r^{2} h \Rightarrow V=\pi\left(100-0.25 h^{2}\right) h \Rightarrow V=100 \pi h-0.25 \pi h^{3}$
$V^{\prime}=100 \pi-0.75 \pi h^{2} \quad V^{\prime \prime}=-1.5 \pi h$

$100 \pi-0.75 \pi h^{2}=0 \Rightarrow h^{2}=\frac{400}{3} \Rightarrow h=\frac{20}{\sqrt{3}}$
By the $2^{\text {nd }}$ derivative test, this value will give us a maximum volume.
The maximum volume will be $100 \pi\left(\frac{20}{\sqrt{3}}\right)-0.25 \pi\left(\frac{20}{\sqrt{3}}\right)^{3} \approx 2418.399 \mathrm{~cm}^{3}$
23)
$p(x)=r(x)-c(x)=8 \sqrt{x}-2 x^{2}$
$p^{\prime}(x)=\frac{4}{\sqrt{x}}-4 x \quad p^{\prime \prime}(x)=\frac{2}{\sqrt{x^{3}}}-4$
$\frac{4}{\sqrt{x}}-4 x=0 \Rightarrow \frac{4}{\sqrt{x}}=4 x \Rightarrow 4=4 x^{3 / 2} \Rightarrow x^{3 / 2}=1 \Rightarrow x=1$
By the $2^{\text {nd }}$ derivative test, this value will produce a maximum.
The production level that maximizes profit is 1000 units.
24)
$p(x)=r(x)-c(x)=\frac{x^{2}}{x^{2}+1}-\frac{(x-1)^{3}}{3}+\frac{1}{3}$
$p^{\prime}(x)=\frac{\left(x^{2}+1\right)(2 x)-x^{2}(2 x)}{\left(x^{2}+1\right)^{2}}-(x-1)^{2}=\frac{2 x}{\left(x^{2}+1\right)^{2}}-(x-1)^{2}$
$p^{\prime \prime}(x)=\frac{\left(x^{2}+1\right)^{2}(2)-2 x\left(2\left(x^{2}+1\right)(2 x)\right)}{\left(x^{2}+1\right)^{4}}-2(x-1)=\frac{2}{\left(x^{2}+1\right)^{2}}-\frac{8 x^{2}}{\left(x^{2}+1\right)^{3}}-2(x-1)$
$\frac{2 x}{\left(x^{2}+1\right)^{2}}-(x-1)^{2}=0 \Rightarrow x \approx 0.294,1.525$
$p^{\prime \prime}(0.294) \approx 2.567 \quad p^{\prime \prime}(1.525) \approx-1.375$
By the $2^{\text {nd }}$ derivative test, a production level of 1,375 units will maximize profits.
25) Average cost $=$ cost divided by number of items produced $=c(x) / x$
$\frac{c(x)}{x}=\frac{x^{3}-10 x^{2}-30 x}{x}=x^{2}-10 x-30$
$\frac{d}{d x}\left(\frac{c(x)}{x}\right)=2 x-10 \quad 2 x-10=0 \Rightarrow x=5$
$\frac{d^{2}}{d x^{2}}\left(\frac{c(x)}{x}\right)=2$
By the $2^{\text {nd }}$ derivative test, the average cost will be minimized at a production level of 5,000 units.
26) Average cost $=$ cost divided by number of items produced $=c(x) / x$
$\frac{c(x)}{x}=\frac{x e^{x}-2 x^{2}}{x}=e^{x}-2 x$
$\frac{d}{d x}\left(\frac{c(x)}{x}\right)=e^{x}-2 \quad e^{x}-2=0 \Rightarrow x=\ln 2$
$\frac{d^{2}}{d x^{2}}\left(\frac{c(x)}{x}\right)=e^{x} \quad e^{\ln 2}=2$
By the $2^{\text {nd }}$ derivative test, the average cost will be minimized at a production level of $\ln 2$ th ousand units, or approx. 693 units.
27) Profit $=$ revenue - cost
$r(x)=x(200-2(x-50))=300 x-2 x^{2}$
$c(x)=6000+32 x$
$p(x)=300 x-2 x^{2}-(6000+32 x)=-6,000+268 x-2 x^{2}$
$p^{\prime}(x)=268-4 x \quad p^{\prime \prime}(x)=-4$
$268-4 x=0 \Rightarrow x=67$
By the $2^{\text {nd }}$ derivative test, $x=67$ must create a maximum profit.
28) a)
$f(x)=x e^{-x} \quad f^{\prime}(x)=-x e^{-x}+e^{-x} \quad f^{\prime \prime}(x)=x e^{-x}-2 e^{-x}$
$-x e^{-x}+e^{-x}=0 \Rightarrow e^{-x}(-x+1)=0 \Rightarrow x=1$
$f^{\prime \prime}(1)=e^{-1}-2 e^{-1}=-\frac{1}{e}$
By the $2^{\text {nd }}$ derivative test, $x=1$ is the maximum value.
b)
29) a)
$f(x)=a x^{3}+b x^{2}+c x+d$
$f^{\prime}(x)=3 a x^{2}+2 b x+c \quad f^{\prime \prime}(x)=6 a x+2 b$
$3 a x^{2}+2 b x+c$ will have either 2 real solutions for x (including the possibility of a "double root"), or 0 real solutions for x.
b) 1) $f(x)=3 x^{3}+\frac{1}{2} x^{2}+8 x-2$ has 0 local extrema, as $f^{\prime}(x)=6 x^{2}+x+8$, and $6 x^{2}-x+8=0 \Rightarrow x=\frac{1 \pm \sqrt{1-4(6)(8)}}{12}$, so the solutions are not real values.
b) 2) $f(x)=\frac{1}{3} x^{3}-x^{2}+x-2$ has 0 (1 "double root) local extrema, as $f^{\prime}(x)=x^{2}-2 x+1$, and $x^{2}-2 x+1=0 \Rightarrow x=1$, but $f^{\prime \prime}(x)=2 x-2 \Rightarrow f(1)=0$, so there is a point of inflection at $x=1$, not a local extremum.
b) 3) $f(x)=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}-2 x+5$ has 2 local extrema, as $f^{\prime}(x)=x^{2}+x-2$, and $x^{2}+x-2=0 \Rightarrow(x+2)(x-1)=0 \Rightarrow x=1,-2 . f^{\prime \prime}(x)=2 x+1 \Rightarrow f(1)=3, f(-2)=-3$, so there is a local maximum at $x=-2$ and a local minimum at $x=1$.
30)
$l+4 w=108 \Rightarrow l=108-4 w$
$V=l w h=(108-4 w)(w)(w)=108 w^{2}-4 w^{3}$
$V^{\prime}=216 w-12 w^{2} \quad V^{\prime \prime}=216-24 w$
$216 w-12 w=0 \Rightarrow w=0,18 \quad V^{\prime \prime}(0)=0, V^{\prime \prime}(18)=-216$
By the second derivative test, a maximum volume is attained when the square end is 18 in . by 18 in ., and the length is 36 in .
31) a)
$2 x+2 y=36 \Rightarrow x=18-y \quad V=\pi r^{2} h \quad C=2 \pi r \quad x=2 \pi r \Rightarrow r=\frac{x}{2 \pi}=\frac{18-y}{2 \pi}$
$V=\pi\left(\frac{18-y}{2 \pi}\right)^{2}(y)=\frac{324 \pi y-36 \pi y^{2}+\pi y^{3}}{2 \pi}=162 y-18 y^{2}+\frac{y^{3}}{2}$
$V^{\prime}=162-36 y+\frac{3}{2} y^{2} \quad V^{\prime \prime}=-36+3 y$
$162-36 y+\frac{3}{2} y^{2}=0 \Rightarrow y=6,18 \quad V^{\prime \prime}(6)=-18, V^{\prime \prime}(18)=18$
By the second derivative test, there will be a maximum volume when $y=6 \mathrm{~cm}$ and $x=12 \mathrm{~cm}$.
b)
$2 x+2 y=36 \Rightarrow y=18-x \quad V=\pi r^{2} h=\pi\left(x^{2}\right)(18-x)=18 \pi x^{2}-\pi x^{3}$
$V^{\prime}=36 \pi x-3 \pi x^{2} \quad V^{\prime \prime}=36 \pi-6 \pi x$
$36 \pi x-3 \pi x^{2}=0 \Rightarrow x=0,12 \quad V^{\prime \prime}(0)=36 \pi, V^{\prime \prime}(12)=-36 \pi$
By the second derivative test, there will be a maximum volume when $y=6 \mathrm{~cm}$ and $x=12 \mathrm{~cm}$.
32)
$r^{2}+h^{2}=(\sqrt{3})^{2} \Rightarrow r=\sqrt{3-h^{2}} \quad V=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi\left(\sqrt{3-h^{2}}\right)^{2} h=\pi h-\frac{1}{3} \pi h^{3}$
$V^{\prime}=\pi-\pi h^{2} \quad V^{\prime \prime}=-2 \pi h$
$\pi-\pi h^{2}=0 \Rightarrow h=1 \quad V^{\prime \prime}(1)=-2 \pi$
By the $2^{\text {nd }}$ derivative test, the maximum volume will be when the height is 1 m and the radius is $\sqrt{2} \mathrm{~m}$.
The volume will be $V=\frac{1}{3} \pi(\sqrt{2})^{2}(1)=\frac{2}{3} \pi \mathrm{~m}^{3}$.
33) a)
$f^{\prime}(x)=2 x-\frac{a}{x^{2}} \quad f^{\prime \prime}(x)=2+\frac{2 a}{x^{3}}$
$2 x-\frac{a}{x^{2}}=0 \Rightarrow a=2 x^{3}=2(2)^{3}=16$
By the $2^{\text {nd }}$ derivative test, this value is a minimum.
b)
$f^{\prime}(x)=2 x-\frac{a}{x^{2}} \quad f^{\prime \prime}(x)=2+\frac{2 a}{x^{3}}$
$2+\frac{2 a}{x^{3}}=0 \Rightarrow 2 a=-2 x^{3} \Rightarrow a=-x^{3}=-1$
34)
$f^{\prime}(x)=2 x-\frac{a}{x^{2}} \quad f^{\prime \prime}(x)=2+\frac{2 a}{x^{3}}$
$2 x-\frac{a}{x^{2}}=0 \Rightarrow a=2 x^{3}$ These values are where local extrema will occur.
$f^{\prime \prime}(x)=2+\frac{2\left(2 x^{3}\right)}{x^{3}}=6$
Since the $2^{\text {nd }}$ derivative value is positive for all values of a, there cannot be a local maximum, only a local minimum, for any value of a.
35) a)
$f^{\prime}(x)=3 x^{2}+2 a x+b \quad f^{\prime \prime}(x)=6 x+2 a$
$f^{\prime}(-1)=3-2 a+b \quad f^{\prime}(3)=27+6 a+b \quad$ Both of these must occur when the derivative $=0$, so
$3-2 a+b=27+6 a+b \Rightarrow 8 a=-24 \Rightarrow a=-3 \quad 3-2(-3)+b=0 \Rightarrow b=-9$
$f^{\prime \prime}(-1)=6(-1)+2(-3)=-12 \quad f^{\prime \prime}(3)=6(3)+2(-3)=12$
The $2^{\text {nd }}$ derivative confirms that these values for a and b give a maximum at $x=-1$ and a minimum at $x=3$
b)
$f^{\prime}(x)=3 x^{2}+2 a x+b \quad f^{\prime \prime}(x)=6 x+2 a$
$f^{\prime}(4)=48+8 a+b \quad f^{\prime \prime}(1)=6+2 a \quad$ Both of these must occur when the derivative $=0$, so
$48+8 a+b \Rightarrow \quad b=-48-8 a \quad 6+2 a=0 \Rightarrow a=-3 \quad b=-48-8(-3)=-24$
$f^{\prime \prime}(4)=6(4)+2(-3)=18$
The $2^{\text {nd }}$ derivative confirms that these values for a and b give a minimum at $x=4$.
36)
$x^{2}+y^{2}=3^{2} \Rightarrow x^{2}=9-y^{2}$
$V=\frac{1}{3} \pi x^{2}(3+y)=\frac{1}{3} \pi\left(9-y^{2}\right)(3+y)=9 \pi+3 \pi y-\pi y^{2}-\frac{\pi}{3} y^{3}$
$V^{\prime}=3 \pi-2 \pi y-\pi y^{2} \quad V^{\prime \prime}=-2 \pi-2 \pi y$
$3 \pi-2 \pi y-\pi y^{2}=0 \Rightarrow 3-2 y-y^{2}=0 \Rightarrow(3+y)(1-y)=0 \Rightarrow y=1,-3$
$V^{\prime \prime}(1)=-4 \pi$
$V=\frac{1}{3} \pi(9-1)(3+1)=\frac{32}{3} \pi$ cubic units
The $2^{\text {nd }}$ derivative test shows that this is a maximum volume.
37) a)
$w^{2}+d^{2}=12^{2} \Rightarrow d^{2}=144-w^{2}$
$S=w d^{2}=w\left(144-w^{2}\right)=144 w-w^{3} \quad S^{\prime}=144-3 w^{2} \quad S^{\prime \prime}=-6 w$
$144-3 w^{2}=0 \Rightarrow w=\sqrt{48} \quad S^{\prime \prime}(\sqrt{48})=-6 \sqrt{48}$
By the $2^{\text {nd }}$ derivative test, the dimensions of the strongest beam that can be cut from a 12-in diameter log are $4 \sqrt{3}$ in. by $\sqrt{96}=4 \sqrt{6}$ in.
38)
$w^{2}+d^{2}=12^{2} \Rightarrow w=\sqrt{144-d^{2}}$
$S=w d^{3}=\sqrt{144-d^{2}}\left(d^{3}\right)$
$S^{\prime}=\sqrt{144-d^{2}}\left(3 d^{2}\right)+d^{3}\left(\frac{-d}{\sqrt{144-d^{2}}}\right)=\frac{3 d^{2}\left(144-d^{2}\right)-d^{4}}{\sqrt{144-d^{2}}}=\frac{432 d^{2}-4 d^{4}}{\sqrt{144-d^{2}}}$
$\frac{432 d^{2}-4 d^{4}}{\sqrt{144-d^{2}}}=0 \Rightarrow 432 d^{2}-4 d^{4}=0 \Rightarrow d=0, \sqrt{108}=6 \sqrt{3}$
$S^{\prime \prime}=\frac{\sqrt{144-d^{2}}\left(864 d-16 d^{3}\right)+\left(432 d^{2}-4 d^{4}\right)\left(\frac{-d}{\sqrt{144-d^{2}}}\right)}{144-d^{2}} \quad S^{\prime \prime}(6 \sqrt{3})=-864 \sqrt{3}$
By the $2^{\text {nd }}$ derivative test, the maximum stiffness occurs when the $12-\mathrm{in}$. diameter cylindrical log is cut into a beam that is $6 \sqrt{3} \mathrm{in}$. by 6 in .
39) a)
$\frac{d s}{d t}=v(t)=-10 \pi \sin \pi t \quad \frac{d v}{d t}=a(t)=-10 \pi^{2} \cos \pi t$
$-10 \pi^{2} \cos \pi t=0 \Rightarrow \cos \pi t=0 \Rightarrow t=\frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \frac{7}{2}$
Maximum speed will be $10 \pi \mathrm{~cm} / \mathrm{sec}$
Position : $s\left(\frac{1}{2}\right)=0 \mathrm{~cm}, s\left(\frac{3}{2}\right)=0 \mathrm{~cm}, s\left(\frac{5}{2}\right)=0 \mathrm{~cm}, s\left(\frac{7}{2}\right)=0 \mathrm{~cm}$
$a\left(\frac{1}{2}\right)=0 \mathrm{~cm} / \sec ^{2}, a\left(\frac{3}{2}\right)=0 \mathrm{~cm} / \sec ^{2}, a\left(\frac{5}{2}\right)=0 \mathrm{~cm} / \sec ^{2}, a\left(\frac{7}{2}\right)=0 \mathrm{~cm} / \mathrm{sec}^{2}$
b)
$\frac{d a}{d t}=10 \pi^{3} \sin \pi t$
$10 \pi^{3} \sin \pi t=0 \Rightarrow \sin \pi t=0 \Rightarrow t=0,1,2,3,4$
Position : $s(0)=10 \mathrm{~cm}, s(1)=-10 \mathrm{~cm}, s(2)=10 \mathrm{~cm}, s(3)=-10 \mathrm{~cm}, s(4)=10 \mathrm{~cm}$
$|v(0)|=0 \mathrm{~cm} / \mathrm{sec},|v(1)|=0 \mathrm{~cm} / \mathrm{sec},|v(2)|=0 \mathrm{~cm} / \mathrm{sec},|v(3)|=0 \mathrm{~cm} / \mathrm{sec},|v(4)|=0 \mathrm{~cm} / \mathrm{sec}$
40)
$i^{\prime}=-2 \sin t+2 \cos t \quad i^{\prime \prime}=-2 \cos t-2 \sin t$
$-2 \sin t+2 \cos t=0 \Rightarrow \cos t=\sin t \Rightarrow t=\frac{\pi}{4}+n \pi$, where n is an integer
$i^{\prime \prime}\left(\frac{\pi}{4}\right)=-2 \cos \left(\frac{\pi}{4}\right)-2 \sin \left(\frac{\pi}{4}\right)=-\sqrt{2}-\sqrt{2}=-2 \sqrt{2}$
$i=2 \cos \left(\frac{\pi}{4}\right)+2 \sin \left(\frac{\pi}{4}\right)=\sqrt{2}+\sqrt{2}=2 \sqrt{2} \mathrm{amps}$
By the $2^{\text {nd }}$ derivative test, this value is a maximum.
41)
$D=\sqrt{\left(x-\frac{3}{2}\right)^{2}+(\sqrt{x}-0)^{2}}=\sqrt{x^{2}-2 x+\frac{9}{4}} \Rightarrow D^{2}=x^{2}-2 x+\frac{9}{4}$
$\frac{d}{d x}\left(D^{2}\right)=2 x-2 \quad \frac{d^{2}}{d x^{2}}\left(D^{2}\right)=2$
$2 x-2=0 \Rightarrow x=1$
$D(1)=\sqrt{1^{2}-2(1)+\frac{9}{4}}=\sqrt{\frac{5}{4}}=\frac{\sqrt{5}}{2}$
By the $2^{\text {nd }}$ derivative test, this distance is a minimum.
42)
$D=\sqrt{(x-1)^{2}+\left(\sqrt{16-x^{2}}-\sqrt{3}\right)^{2}}=\sqrt{x^{2}-2 x+1+16-x^{2}-2 \sqrt{48-3 x^{2}}-3}=\sqrt{-2 x+14-2 \sqrt{48-3 x^{2}}}$
$\Rightarrow D^{2}=-2 x+14-2 \sqrt{48-3 x^{2}}$
$\frac{d}{d x}\left(D^{2}\right)=-2+\frac{6 x}{\sqrt{48-3 x^{2}}}=\frac{6 x-2 \sqrt{48-3 x^{2}}}{\sqrt{48-3 x^{2}}} \quad \frac{d^{2}}{d x^{2}}\left(D^{2}\right)=\frac{288+18 x-18 x^{2}}{\left(48-3 x^{2}\right)^{3 / 2}}$
$\frac{6 x-2 \sqrt{48-3 x^{2}}}{\sqrt{48-3 x^{2}}}=0 \Rightarrow 6 x-2 \sqrt{48-3 x^{2}}=0 \Rightarrow 3 x=\sqrt{48-3 x^{2}} \Rightarrow 9 x^{2}=48-3 x^{2} \Rightarrow x^{2}=4 \Rightarrow x=2$
$D(2)=\sqrt{(2-1)^{2}+\left(\sqrt{16-2^{2}}-\sqrt{3}\right)^{2}}=\sqrt{1+12-2 \sqrt{36}+3}=2$
$\frac{d^{2}}{d x^{2}}\left(D^{2}(2)\right)=\frac{288+18(2)-18(2)^{2}}{\left(48-3(2)^{2}\right)^{3 / 2}}=\frac{7}{6}$
By the $2^{\text {nd }}$ derivative test, the minimum distance is 2 .
43)
$f^{\prime}(x)=2 x-1 \quad f^{\prime \prime}(x)=2$
$2 x-1=0 \Rightarrow x=\frac{1}{2}$
$f\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^{2}-\frac{1}{2}+1=\frac{3}{4}$
By the $2^{\text {nd }}$ derivative test, this value is a minimum. Therefore the function cannot be negative.
44)
$f^{\prime}(x)=-4 \sin x-2 \sin 2 x \quad f^{\prime \prime}(x)=-4 \cos x-4 \cos 2 x$
$-4 \sin x-2 \sin 2 x=0 \Rightarrow-2 \sin x=\sin 2 x \Rightarrow-2 \sin x=2 \sin x \cos x \Rightarrow \cos x=-1 \Rightarrow x=\pi$
$f^{\prime \prime}(\pi)=-4 \cos \pi-4 \cos 2 \pi=4-4=0$
$f^{\prime}\left(\frac{\pi}{2}\right)=-4 \sin \left(\frac{\pi}{2}\right)-2 \sin 2\left(\frac{\pi}{2}\right)=-4 \quad f^{\prime}\left(\frac{3 \pi}{2}\right)=-4 \sin \left(\frac{3 \pi}{2}\right)-2 \sin 2\left(\frac{3 \pi}{2}\right)=4$
The $2^{\text {nd }}$ derivative test is inconclusive. The $1^{\text {st }}$ derivative test shows that $x=\pi$ creates a minimum. The minimum value for y is 0 , so the function will never be negative.
45) a) When the weights pass each other, $s_{1}=s_{2}$
$2 \sin t=\sin 2 t \Rightarrow 2 \sin t=2 \sin t \cos t \Rightarrow 2 \sin t \cos t-2 \sin t=0 \Rightarrow 2 \sin t(\cos t-1)=0$
$\Rightarrow \sin t=0, \cos t=1 \Rightarrow t=n \pi, n$ is an positive integer .
b)
$d=s_{1}-s_{2}=2 \sin t-\sin 2 t=2 \sin t-2 \sin t \cos t$
$d^{\prime}=2 \cos t-2 \sin t(-\sin t)-2 \cos t(\cos t)=2 \cos t+2 \sin ^{2} t-2 \cos ^{2} t$
$d^{\prime \prime}=-2 \sin t+4 \sin t(\cos t)+4 \cos t(\sin t)=-2 \sin t+8 \sin t \cos t$
$2 \cos t+2 \sin ^{2} t-2 \cos ^{2} t=0 \Rightarrow 2 \cos t+2\left(1-\cos ^{2} t\right)-2 \cos ^{2} t=0$
$\Rightarrow 2 \cos t+2-4 \cos ^{2} t=0 \Rightarrow-2\left(2 \cos ^{2} t-\cos t-1\right)=0 \Rightarrow 2(2 \cos t+1)(\cos t-1)=0$
$\Rightarrow \cos t=-\frac{1}{2}$ or $\cos t=1 \Rightarrow t=\frac{2 \pi}{3}, \frac{4 \pi}{3}$ or 0
$d^{\prime \prime}\left(\frac{2 \pi}{3}\right)=-2 \sin \left(\frac{2 \pi}{3}\right)+8 \sin \left(\frac{2 \pi}{3}\right) \cos \left(\frac{2 \pi}{3}\right)=-2\left(\frac{\sqrt{3}}{2}\right)+8\left(\frac{\sqrt{3}}{2}\right)\left(-\frac{1}{2}\right)=-3 \sqrt{3}$
$d^{\prime \prime}\left(\frac{4 \pi}{3}\right)=-2 \sin \left(\frac{4 \pi}{3}\right)+8 \sin \left(\frac{4 \pi}{3}\right) \cos \left(\frac{4 \pi}{3}\right)=-2\left(\frac{\sqrt{3}}{2}\right)+8\left(\frac{\sqrt{3}}{2}\right)\left(-\frac{1}{2}\right)=-3 \sqrt{3}$
$d^{\prime \prime}(0)=-2 \sin (0)+8 \sin (0) \cos (0)=0$
$d\left(\frac{2 \pi}{3}\right)=2 \sin \left(\frac{2 \pi}{3}\right)-2 \sin \left(\frac{2 \pi}{3}\right) \cos \left(\frac{2 \pi}{3}\right)=2\left(\frac{\sqrt{3}}{2}\right)-2\left(\frac{\sqrt{3}}{2}\right)\left(-\frac{1}{2}\right)=\frac{3 \sqrt{3}}{2}$
$d\left(\frac{5 \pi}{3}\right)=2 \sin \left(\frac{4 \pi}{3}\right)-2 \sin \left(\frac{4 \pi}{3}\right) \cos \left(\frac{4 \pi}{3}\right)=2\left(\frac{\sqrt{3}}{2}\right)-2\left(\frac{\sqrt{3}}{2}\right)\left(-\frac{1}{2}\right)=\frac{3 \sqrt{3}}{2}$
By the $2^{\text {nd }}$ derivative test, the distance is greatest when $t=\frac{2 \pi}{3}$ or $\frac{4 \pi}{3}$. The greatest distance is $\frac{3 \sqrt{3}}{2}$
46) a)
$\sin t=\sin \left(t+\frac{\pi}{3}\right) \Rightarrow \sin t=\sin t \cos \left(\frac{\pi}{3}\right)+\cos t \sin \left(\frac{\pi}{3}\right) \Rightarrow \sin t=\frac{\sin t}{2}+\frac{\sqrt{3}}{2} \cos t$
$\Rightarrow \sin t=\sqrt{3} \cos t \Rightarrow \tan t=\sqrt{3} \Rightarrow t=\frac{\pi}{3}, \frac{4 \pi}{3}$
46) b)
$d=\sin t-\sin \left(t+\frac{\pi}{3}\right) \Rightarrow d=\sin t-\sin t \cos \left(\frac{\pi}{3}\right)-\cos t \sin \left(\frac{\pi}{3}\right) \Rightarrow d=\sin t-\frac{\sin t}{2}-\frac{\sqrt{3}}{2} \cos t$
$\Rightarrow d=\frac{\sin t}{2}-\frac{\sqrt{3}}{2} \cos t$
$d^{\prime}=\frac{\cos t}{2}+\frac{\sqrt{3}}{2} \sin t \quad d^{\prime \prime}=-\frac{\sin t}{2}+\frac{\sqrt{3}}{2} \cos t$
$\frac{\cos t}{2}+\frac{\sqrt{3}}{2} \sin t=0 \Rightarrow \sqrt{3} \sin t=-\cos t \Rightarrow \tan t=-\frac{1}{\sqrt{3}} \Rightarrow t=\frac{5 \pi}{6}, \frac{11 \pi}{6}$
$d^{\prime \prime}\left(\frac{5 \pi}{6}\right)=-\frac{\sin \left(\frac{5 \pi}{6}\right)}{2}+\frac{\sqrt{3}}{2} \cos \left(\frac{5 \pi}{6}\right)=-\frac{1}{4}+\frac{\sqrt{3}}{2}\left(-\frac{\sqrt{3}}{2}\right)=-1$
$d^{\prime \prime}\left(\frac{11 \pi}{6}\right)=-\frac{\sin \left(\frac{11 \pi}{6}\right)}{2}+\frac{\sqrt{3}}{2} \cos \left(\frac{11 \pi}{6}\right)=\frac{1}{4}+\frac{\sqrt{3}}{2}\left(\frac{\sqrt{3}}{2}\right)=1$
$d=\sin \left(\frac{5 \pi}{6}\right)-\sin \left(\frac{5 \pi}{6}+\frac{\pi}{3}\right)=\frac{1}{2}-\sin \left(\frac{7 \pi}{6}\right)=\frac{1}{2}-\left(-\frac{1}{2}\right)=1$
By the $2^{\text {nd }}$ derivative test, this is a maximum value.
46) c)
$d^{\prime \prime}=-\frac{\sin t}{2}+\frac{\sqrt{3}}{2} \cos t$
$-\frac{\sin t}{2}+\frac{\sqrt{3}}{2} \cos t=0 \Rightarrow \sqrt{3} \cos t=\sin t \Rightarrow \tan t=\sqrt{3} \Rightarrow t=\frac{\pi}{3}, \frac{4 \pi}{3}$
47)

