Calculus Section 4.4 Modeling and Optimization

1) a) The domain of this problem is [0,20] $x + y = 20 \Rightarrow y = 20 - x$ $S = x^{2} + (20 - x)^{2} = 2x^{2} - 40x + 400$ S' = 4x - 40 $4x - 40 = 0 \Rightarrow x = 10$ S'' = 4

By the second derivative test, we have a minimum value for the sum of the squares when the two numbers are 10 and 10 (the sum is 200). We have a maximum at the endpoints of the domain, where the numbers are 0 and 20 (and the sum is 400).

1) b) The domain of this problem is [0,20]

$$x + y = 20 \Rightarrow y = 20 - x \quad S = \sqrt{x} + 20 - x$$

$$S' = \frac{1}{2\sqrt{x}} - 1 = \frac{1 - 2\sqrt{x}}{2\sqrt{x}} \quad 1 - 2\sqrt{x} = 0 \Rightarrow x = \frac{1}{4} \quad S'' = -\frac{1}{4\sqrt{x^3}}$$

By the second derivative test, we have a maximum value for the sum of the square root of one number and the other occurs when the two numbers are 1/4 and 79/4 (the sum is 81/4). We have a minimum at the endpoints of the domain, where the numbers are 0 and 20 (and the sum is $\sqrt{20}$).

2) Domain of the function is (0,5)

$$x^{2} + y^{2} = 25 \Rightarrow y = \sqrt{25 - x^{2}}$$

 $A = \frac{1}{2}x\sqrt{25 - x^{2}}$ $A' = \frac{1}{2}x\left(\frac{1}{2}(25 - x^{2})^{-1/2}(-2x)\right) + \frac{1}{2}\sqrt{25 - x^{2}} = \frac{-x^{2} + 25 - x^{2}}{2\sqrt{25 - x^{2}}} = \frac{25 - 2x^{2}}{2\sqrt{25 - x^{2}}}$
 $25 - 2x^{2} = 0 \Rightarrow x = \sqrt{\frac{25}{2}} = \frac{\sqrt{50}}{2} \approx 3.536$ $y = \sqrt{\frac{25}{2}} \approx 3.536$
 $A'' = \frac{2\sqrt{25 - x^{2}}(-4x) - (25 - 2x^{2})\left((25 - x^{2})^{-1/2}(-2x)\right)}{4(25 - x^{2})} = \frac{-8x(25 - x^{2}) + 4x(25 - x^{2})}{4(25 - x^{2})^{3/2}} = \frac{x^{3} - 25x}{(25 - x^{2})^{3/2}}$
 $A''\left(\sqrt{\frac{25}{2}}\right) = \frac{\frac{25}{2}\sqrt{\frac{25}{2}} - 25\sqrt{\frac{25}{2}}}{(25 - \frac{25}{2})^{3/2}} < 0$

[-1,6] by [-1,6]

3)

$$lw = 16 \Rightarrow w = \frac{16}{l} \quad P = 2l + 2w = 2l + \frac{32}{l} \quad P' = 2 - \frac{32}{l^2} \quad P'' = \frac{64}{l^3}$$
$$2 - \frac{32}{l^2} = 0 \Rightarrow l^2 = 16 \Rightarrow l = 4 \quad P''(4) > 0$$

 $l^2 = l^2 = 0 \Rightarrow l^2 = 10 \Rightarrow l^2 = 10 \Rightarrow l^2 = 10^{-10}$ Since P'' < 0, the value gives a minimum for the perimeter by the 2nd derivative test.

[-1,17] by [10,50]

4) Domain of the function is (0,4) $2l + 2w = 8 \implies w = 4 - l$ $A = l(4 - l) = 4l - l^2$ A' = 4 - 2l A'' = -2

 $4-2l = 0 \Rightarrow l = 2 \Rightarrow w = 2$ Since the 2nd derivative is less than zero, l = w = 2 is a maximum value, so the square with sides of 2 m would be the rectangle with the largest area of all rectangles with a perimeter of 8 m.

[-1,5] by [-1,5]

- 5) a) P(x, 1-x)b) $A = 2x(1-x) = 2x - 2x^2$
 - c) A' = 2 4x A'' = -4 $2 4x = 0 \Rightarrow x = \frac{1}{2}$. By the 2nd derivative test, this value must be a maximum. The largest area that the rectangle can have is $\frac{1}{2}$, the dimensions of the rectangle are 1 unit by $\frac{1}{2}$ unit.

6)

 $A = 2x(12 - x^2) = 24x - 2x^3$ $A' = 24 - 6x^2$ A'' = -12x $24 - 6x^2 = 0 \Rightarrow x = 2$

The 2nd derivative test shows that this value must be a maximum. The dimensions of the rectangle of greatest area are 4 units by 8 units, and thus the largest area is 32 square units.

[-1,6] by [-5,50]

7) $v = (8-2x)(15-2x)x = 120x - 46x^2 + 4x^3$ $A' = 120 - 92x + 12x^2$ A'' = -92 + 24x $12x^{2} - 92x + 120 = 0 \Longrightarrow 4(3x^{2} - 23x + 30) = 0 \Longrightarrow 4(3x - 5)(x - 6) \Longrightarrow x = 6, \frac{5}{3}$ 6 is an impossible value for x. A" < 0 for $x = \frac{5}{3}$, so by the 2nd derivative test this must be a maximum value.

The dimensions for the maximum volume would be $\frac{5}{3}$ in $\times \frac{14}{3}$ in $\times \frac{35}{3}$ in , and the maximum

$$\begin{aligned} a^{2} + b^{2} &= 20^{2} \Rightarrow b = \sqrt{400 - a^{2}} \\ A &= \frac{1}{2}a\sqrt{400 - a^{2}} \quad A' = \frac{1}{2}a\left(\frac{1}{2}(400 - a^{2})^{-1/2}(-2a)\right) + \frac{1}{2}\sqrt{400 - a^{2}} = \frac{-a^{2} + 400 - a^{2}}{2\sqrt{400 - a^{2}}} = \frac{400 - 2a^{2}}{2\sqrt{400 - a^{2}}} \\ 400 - 2a^{2} &= 0 \Rightarrow a = \sqrt{\frac{400}{2}} = 10\sqrt{2} \approx 14.142 \quad b = \sqrt{\frac{400}{2}} = 10\sqrt{2} \approx 14.142 \\ A'' &= \frac{2\sqrt{400 - a^{2}}(-4a) - (400 - 2a^{2})((400 - a^{2})^{-1/2}(-2a))}{4(400 - a^{2})} = \frac{-8a(400 - a^{2}) + 4a(400 - a^{2})}{4(400 - a^{2})^{3/2}} = \frac{a^{3} - 400a}{(400 - a^{2})^{3/2}} \end{aligned}$$

9)

$$2x + y = 800 \Rightarrow y = 800 - 2x$$

 $A = xy = x(800 - 2x) = 800x - 2x^2$ $A' = 800 - 4x$ $A'' = -4$

 $800 - 4x = 0 \implies x = 200$ y = 800 - 400 = 400

By the 2^{nd} derivative test, this value is a maximum. The largest area that can be enclosed is 80,000 m², with dimensions 200 m (perpendicular to the river) by 400 m (parallel to the river)

[-10,410] by [-10,81000]

10)

 $xy = 216 \Rightarrow y = \frac{216}{x}$ $P = 3x + 2y = 3x + \frac{432}{x} \quad P' = 3 - \frac{432}{x^2} \quad P'' = \frac{864}{x^3}$ $3 - \frac{432}{r^2} = 0 \Rightarrow x^2 = 144 \Rightarrow x = 12$ $y = \frac{216}{12} = 18$

By the 2^{nd} derivative test, this value is a minimum. The minimum fencing needed will be 72 m, making a 12 m by 18 m rectangle with a 12 m divider.

[-10,50] by [-10,200]

11)

$$V = lwh = l^{2}h \quad 500 = l^{2}h \Rightarrow h = \frac{500}{l^{2}}$$

$$SA = l^{2} + 4lh = l^{2} + 4l\left(\frac{500}{l^{2}}\right) = l^{2} + \frac{2000}{l} \quad SA' = 2l - \frac{2000}{l^{2}} \quad SA'' = 2 + \frac{2000}{l^{3}}$$

$$2l - \frac{2000}{l^{2}} = 0 \Rightarrow l^{3} = 1000 \Rightarrow l = 10$$

By the 2^{nd} derivative test, this value is a minimum.

The dimensions that will make the tank weigh as little as possible (least surface area) is 10 ft by 10 ft (on the base) by 5 ft high.

12)

$$V = lwh = x^{2}y \quad 1125 = x^{2}y \Rightarrow y = \frac{1125}{x^{2}}$$

$$c = 5x^{2} + 30xy = 5x^{2} + 30x\left(\frac{1125}{x^{2}}\right) = 5x^{2} + \frac{33750}{x}$$

$$c' = 10x - \frac{33750}{x^{2}} \quad c'' = 10 + \frac{33750}{x^{3}}$$

$$10x - \frac{33750}{x^{2}} = 0 \Rightarrow x = 15 \quad y = \frac{1125}{15^{2}} = 5$$
By the 2nd derivative test, the value is a minimum

The dimensions of the tank that will minimize the total cost is 15 ft by 15 ft (the base) by a height of 5 ft.

13) Call the dimensions of the printed area x for width and y for height.

$$xy = 50 \Rightarrow y = \frac{50}{x} \quad \text{With margins : width} = x + 4, \text{ height} = y + 8$$
$$A = (x + 4)(y + 8) = (x + 4)\left(\frac{50}{x} + 8\right) = 50 + 8x + \frac{200}{x} + 32 = 82 + 8x + \frac{200}{x}$$
$$A' = 8 - \frac{200}{x^2} \quad A'' = \frac{400}{x^3} \quad 8 - \frac{200}{x^2} = 0 \Rightarrow x^2 = 25 \Rightarrow x = 5$$

By the 2nd derivative test, this value is a minimum. The dimensions that minimize the amount of paper used are 9 inches wide by 18 inches high.

14) a)
$$v = -32t + 96$$
 $v(0) = 96$ ft/sec
b) $-32t + 96 = 0 \Rightarrow t = 3$ seconds after it starts, $s = -16(3^2) + 96(3) + 112 = 256$ ft.
c) $-16t^2 + 96t + 112 = 0 \Rightarrow -16(t^2 - 6t - 7) = 0 \Rightarrow -16(t - 7)(t + 1) = 0 \Rightarrow t = -1, 7$
Disregard $t = -1$. At $t = 7$, $v(7) = -32(7) + 96 = -128$ ft/sec

15)

$$A = \frac{1}{2}ab\sin\theta \quad \frac{dA}{d\theta} = \frac{1}{2}ab\cos\theta \quad \frac{d^{2}A}{d\theta^{2}} = -\frac{1}{2}ab\sin\theta$$

$$\frac{1}{2}ab\cos\theta = 0 \Rightarrow \cos\theta = 0 \Rightarrow \theta = \frac{\pi}{2}$$
By the 2nd derivative test, this value is a maximum.

$$V = \pi r^{2}h \quad 1000 = \pi r^{2}h \Rightarrow h = \frac{1000}{\pi r^{2}}$$

$$SA = 2\pi rh + \pi r^{2} = \frac{2000}{r} + \pi r^{2} \quad SA' = 2\pi r - \frac{2000}{r^{2}} \quad SA'' = 2\pi + \frac{4000}{r^{3}}$$

$$2\pi r - \frac{2000}{r^{2}} = 0 \Rightarrow \pi r^{3} = 1000 \Rightarrow r = \frac{10}{\sqrt[3]{\pi}} \approx 6.83$$
By the 2nd derivative test, this value will be a minimum.

$$V = \pi r^{2}h \Rightarrow 1000 = \pi r^{2}h \Rightarrow h = \frac{1000}{\pi r^{2}}$$

$$SA = 8r^{2} + 2\pi rh = 8r^{2} + \frac{2000}{r} \quad SA' = 16r - \frac{2000}{r^{2}} \quad SA'' = 16 + \frac{2000}{r^{3}}$$

$$16r - \frac{2000}{r^{2}} = 0 \Rightarrow 16r^{3} = 2000 \Rightarrow r = 5 \quad h = \frac{1000}{\pi(25)} = \frac{40}{\pi}$$

$$\frac{h}{r} = \frac{\frac{40}{\pi}}{5} = \frac{8}{\pi}, \text{ so the ration is } \frac{8}{\pi} \text{ to } 1.$$

$$18) \text{ a) } V = (7.5 - x)(10 - 2x)x = 75x - 25x^{2} + 2x^{3}$$

$$b) \text{ Domain: (0,5)}$$

[-1,6] by [-5,75] c) Maximum volume is 66.019 in 3 when $x \approx 1.962$

FUNC

RAD AUTO

MAIN

d)
$$V' = 75 - 50x + 6x^2$$
 $75 - 50x + 6x^2 = 0 \Rightarrow x = \frac{50 \pm \sqrt{700}}{12} \approx 1.962 \text{ or } 6.371 \text{ (6.371 is out of the domain)}$

19) a)
$$V = 2(18 - 2x)(24 - 2x)x = 864x - 168x^2 + 8x^3$$

b) Domain (0,9)

[-1,10] by [-100,1500]

c) 1309.632 in³ when x = 3.456

d) $V' = 864 - 336x + 24x^2$ $864 - 336x + 24x^2 = 0 \Rightarrow x \approx 3.394, 10.606$. Disregard 10.606 (out of domain) e) $1120 = 864x - 168x^2 + 8x^3 \Rightarrow x = 2,5,14$. Disregard 14 (out of domain)

20)

$$T = \frac{\sqrt{x^{2} + 4}}{2} + \frac{6 - x}{5} = \frac{1}{2}\sqrt{x^{2} + 4} - \frac{1}{5}x + \frac{6}{5}$$

$$T' = \frac{1}{4}\left(x^{2} + 4\right)^{-1/2}\left(2x\right) - \frac{1}{5} = \frac{x}{2\sqrt{x^{2} + 4}} - \frac{1}{5} = \frac{5x - 2\sqrt{x^{2} + 4}}{10\sqrt{x^{2} + 4}}$$

$$\frac{5x - 2\sqrt{x^{2} + 4}}{10\sqrt{x^{2} + 4}} = 0 \Rightarrow 5x - 2\sqrt{x^{2} + 4} = 0 \Rightarrow \sqrt{x^{2} + 4} = \frac{5x}{2} \Rightarrow x^{2} + 4 = \frac{25x^{2}}{4} \Rightarrow 21x^{2} = 16 \Rightarrow x = \frac{4}{\sqrt{21}} \approx 0.873$$

21)

$$A = 2x(4\cos(0.5x)) = 8x\cos(0.5x)$$

$$A' = 8x(-\sin(0.5x))(0.5) + 8\cos(0.5x) = 8\cos(0.5x) - 4x\sin(0.5x)$$

$$A'' = -8\sin(0.5x)[0.5] - 4x\cos(0.5x) - 4\sin(0.5x) = -4x\cos(0.5x) - 8\sin(0.5x)$$

$$8\cos(0.5x) - 4x\sin(0.5x) = 0 \Rightarrow x \approx 1.721$$

The 2^{nd} derivative test shows that this value is a maximum. The dimensions of the rectangle with the largest area are 3.442 by 2.608, the maximum area is approx. 8.977.

22)

$$r^{2} + (0.5h)^{2} = 10^{2} \Rightarrow r^{2} + 0.25h^{2} = 100 \Rightarrow r^{2} = 100 - 0.25h^{2}$$

 $V = \pi r^{2}h \Rightarrow V = \pi (100 - 0.25h^{2})h \Rightarrow V = 100\pi h - 0.25\pi h^{3}$
 $V' = 100\pi - 0.75\pi h^{2}$ $V'' = -1.5\pi h$
 $100\pi - 0.75\pi h^{2} = 0 \Rightarrow h^{2} = \frac{400}{3} \Rightarrow h = \frac{20}{\sqrt{3}}$
By the 2nd derivative test, this value will give us a maximum volume.
The maximum volume will be $100\pi \left(\frac{20}{\sqrt{3}}\right) - 0.25\pi \left(\frac{20}{\sqrt{3}}\right)^{3} \approx 2418.399 \text{ cm}^{3}$

23)

$$p(x) = r(x) - c(x) = 8\sqrt{x} - 2x^{2}$$

$$p'(x) = \frac{4}{\sqrt{x}} - 4x \quad p''(x) = \frac{2}{\sqrt{x^{3}}} - 4$$

$$\frac{4}{\sqrt{x}} - 4x = 0 \Rightarrow \frac{4}{\sqrt{x}} = 4x \Rightarrow 4 = 4x^{3/2} \Rightarrow x^{3/2} = 1 \Rightarrow x = 1$$
By the 2nd derivative test, this value will produce a maximum set of the s

By the 2nd derivative test, this value will produce a maximum. The production level that maximizes profit is 1000 units.

24)

$$p(x) = r(x) - c(x) = \frac{x^2}{x^2 + 1} - \frac{(x - 1)^3}{3} + \frac{1}{3}$$

$$p'(x) = \frac{(x^2 + 1)(2x) - x^2(2x)}{(x^2 + 1)^2} - (x - 1)^2 = \frac{2x}{(x^2 + 1)^2} - (x - 1)^2$$

$$p''(x) = \frac{(x^2 + 1)^2(2) - 2x(2(x^2 + 1)(2x))}{(x^2 + 1)^4} - 2(x - 1) = \frac{2}{(x^2 + 1)^2} - \frac{8x^2}{(x^2 + 1)^3} - 2(x - 1)$$

$$\frac{2x}{(x^2 + 1)^2} - (x - 1)^2 = 0 \Rightarrow x \approx 0.294, 1.525$$

$$p''(0.294) \approx 2.567 \quad p''(1.525) \approx -1.375$$

By the 2nd derivative test, a production level of 1, 375 units will maximize profits.

25) Average cost = cost divided by number of items produced =
$$c(x)/x$$

$$\frac{c(x)}{x} = \frac{x^3 - 10x^2 - 30x}{x} = x^2 - 10x - 30$$

$$\frac{d}{dx} \left(\frac{c(x)}{x}\right) = 2x - 10 \quad 2x - 10 = 0 \Rightarrow x = 5$$

$$\frac{d^2}{dx^2} \left(\frac{c(x)}{x}\right) = 2$$

By the 2nd derivative test, the average cost will be minimized at a production level of 5,000 units.

26) Average cost = cost divided by number of items produced = c(x)/x $\frac{c(x)}{x} = \frac{xe^x - 2x^2}{x} = e^x - 2x$ $\frac{d}{dx} \left(\frac{c(x)}{x}\right) = e^x - 2 \quad e^x - 2 = 0 \Rightarrow x = \ln 2$ $\frac{d^2}{dx^2} \left(\frac{c(x)}{x}\right) = e^x \quad e^{\ln 2} = 2$

By the 2^{nd} derivative test, the average cost will be minimized at a production level of ln2 th ousand units, or approx. 693 units.

27) Profit = revenue - cost $r(x) = x(200 - 2(x - 50)) = 300x - 2x^2$ c(x) = 6000 + 32x $p(x) = 300x - 2x^2 - (6000 + 32x) = -6,000 + 268x - 2x^2$ p'(x) = 268 - 4x p''(x) = -4 $268 - 4x = 0 \Rightarrow x = 67$ By the 2nd derivative test, x = 67 must create a maximum profit.

28) a)

$$f(x) = xe^{-x}$$
 $f'(x) = -xe^{-x} + e^{-x}$ $f''(x) = xe^{-x} - 2e^{-x}$
 $-xe^{-x} + e^{-x} = 0 \Rightarrow e^{-x}(-x+1) = 0 \Rightarrow x = 1$
 $f''(1) = e^{-1} - 2e^{-1} = -\frac{1}{e}$
By the 2nd derivative test $x = 1$ is the maximum value

By the 2^{nd} derivative test, x = 1 is the maximum value.

b)

29) a)

$$f(x) = ax^{3} + bx^{2} + cx + d$$

$$f'(x) = 3ax^{2} + 2bx + c \quad f''(x) = 6ax + 2b$$

$$3ax^{2} + 2bx + c \text{ will have either 2 real solut}$$

 $3ax^2 + 2bx + c$ will have either 2 real solutions for x (including the possibility of a "double root"), or 0 real solutions for x.

b) 1)
$$f(x) = 3x^3 + \frac{1}{2}x^2 + 8x - 2$$
 has 0 local extrema, as $f'(x) = 6x^2 + x + 8$, and
 $6x^2 - x + 8 = 0 \Rightarrow x = \frac{1 \pm \sqrt{1 - 4(6)(8)}}{12}$, so the solutions are not real values.
b) 2) $f(x) = \frac{1}{3}x^3 - x^2 + x - 2$ has 0 (1 "double root) local extrema, as $f'(x) = x^2 - 2x + 1$, and
 $x^2 - 2x + 1 = 0 \Rightarrow x = 1$, but $f''(x) = 2x - 2 \Rightarrow f(1) = 0$, so there is a point of inflection at $x = 1$, not a local
extremum.

b) 3)
$$f(x) = \frac{1}{3}x^3 + \frac{1}{2}x^2 - 2x + 5$$
 has 2 local extrema, as $f'(x) = x^2 + x - 2$, and $x^2 + x - 2 = 0 \Rightarrow (x + 2)(x - 1) = 0 \Rightarrow x = 1, -2$. $f''(x) = 2x + 1 \Rightarrow f(1) = 3, f(-2) = -3$, so there is a local maximum at $x = -2$ and a local minimum at $x = 1$.

30) $l + 4w = 108 \Rightarrow l = 108 - 4w$ $V = lwh = (108 - 4w)(w)(w) = 108w^2 - 4w^3$ $V' = 216w - 12w^2$ V'' = 216 - 24w $216w - 12w = 0 \Rightarrow w = 0,18$ V''(0) = 0, V''(18) = -216

By the second derivative test, a maximum volume is attained when the square end is 18 in. by 18 in., and the length is 36 in.

31) a)

$$2x + 2y = 36 \Rightarrow x = 18 - y \quad V = \pi r^{2}h \quad C = 2\pi r \quad x = 2\pi r \Rightarrow r = \frac{x}{2\pi} = \frac{18 - y}{2\pi}$$

$$V = \pi \left(\frac{18 - y}{2\pi}\right)^{2} \left(y\right) = \frac{324\pi y - 36\pi y^{2} + \pi y^{3}}{2\pi} = 162y - 18y^{2} + \frac{y^{3}}{2}$$

$$V' = 162 - 36y + \frac{3}{2}y^{2} \quad V'' = -36 + 3y$$

$$162 - 36y + \frac{3}{2}y^{2} = 0 \Rightarrow y = 6,18 \quad V''(6) = -18, V''(18) = 18$$

By the second derivative test, there will be a maximum volume when y = 6 cm and x = 12 cm.

b)

$$2x + 2y = 36 \Rightarrow y = 18 - x$$
 $V = \pi r^2 h = \pi (x^2)(18 - x) = 18\pi x^2 - \pi x^3$
 $V' = 36\pi x - 3\pi x^2$ $V'' = 36\pi - 6\pi x$
 $36\pi x - 3\pi x^2 = 0 \Rightarrow x = 0,12$ $V''(0) = 36\pi, V''(12) = -36\pi$
By the second derivative test, there will be a maximum volume when $y = 6$ cm and $x = 12$ cm.

32)

$$r^{2} + h^{2} = \left(\sqrt{3}\right)^{2} \Rightarrow r = \sqrt{3 - h^{2}} \quad V = \frac{1}{3}\pi r^{2}h = \frac{1}{3}\pi \left(\sqrt{3 - h^{2}}\right)^{2}h = \pi h - \frac{1}{3}\pi h^{3}$$

$$V' = \pi - \pi h^{2} \quad V'' = -2\pi h$$

$$\pi - \pi h^{2} = 0 \Rightarrow h = 1 \quad V''(1) = -2\pi$$
By the 2nd derivative test, the maximum volume will be when the height

By the 2nd derivative test, the maximum volume will be when the height is 1 m and the radius is $\sqrt{2}$ m. The volume will be $V = \frac{1}{3}\pi (\sqrt{2})^2 (1) = \frac{2}{3}\pi \text{ m}^3$.

33) a)

$$f'(x) = 2x - \frac{a}{x^2} \qquad f''(x) = 2 + \frac{2a}{x^3}$$
$$2x - \frac{a}{x^2} = 0 \Rightarrow a = 2x^3 = 2(2)^3 = 16$$

By the 2nd derivative test, this value is a minimum.

b)

$$f'(x) = 2x - \frac{a}{x^2} \quad f''(x) = 2 + \frac{2a}{x^3}$$
$$2 + \frac{2a}{x^3} = 0 \Rightarrow 2a = -2x^3 \Rightarrow a = -x^3 = -1$$

$$f'(x) = 2x - \frac{a}{x^2}$$
 $f''(x) = 2 + \frac{2a}{x^3}$

 $2x - \frac{a}{r^2} = 0 \Rightarrow a = 2x^3$ These values are where local extrema will occur.

$$f''(x) = 2 + \frac{2(2x^3)}{x^3} = 6$$

Since the 2^{nd} derivative value is positive for all values of *a*, there cannot be a local maximum, only a local minimum, for any value of a.

35) a) $f'(x) = 3x^{2} + 2ax + b \quad f''(x) = 6x + 2a$ f'(-1) = 3 - 2a + b f'(3) = 27 + 6a + b Both of these must occur when the derivative = 0, so $3-2a+b=27+6a+b \Rightarrow 8a=-24 \Rightarrow a=-3$ $3-2(-3)+b=0 \Rightarrow b=-9$ f''(-1) = 6(-1) + 2(-3) = -12 f''(3) = 6(3) + 2(-3) = 12

The 2nd derivative confirms that these values for *a* and *b* give a maximum at x = -1 and a minimum at x = 3

b)

$$f'(x) = 3x^2 + 2ax + b$$
 $f''(x) = 6x + 2a$
 $f'(4) = 48 + 8a + b$ $f''(1) = 6 + 2a$ Both of these must occur when the derivative = 0, so
 $48 + 8a + b \Rightarrow b = -48 - 8a$ $6 + 2a = 0 \Rightarrow a = -3$ $b = -48 - 8(-3) = -24$
 $f''(4) = 6(4) + 2(-3) = 18$

The 2^{na} derivative confirms that these values for *a* and *b* give a minimum at x = 4.

36)

$$x^{2} + y^{2} = 3^{2} \Rightarrow x^{2} = 9 - y^{2}$$

 $V = \frac{1}{3}\pi x^{2}(3+y) = \frac{1}{3}\pi (9 - y^{2})(3+y) = 9\pi + 3\pi y - \pi y^{2} - \frac{\pi}{3}y^{3}$
 $V' = 3\pi - 2\pi y - \pi y^{2}$ $V'' = -2\pi - 2\pi y$
 $3\pi - 2\pi y - \pi y^{2} = 0 \Rightarrow 3 - 2y - y^{2} = 0 \Rightarrow (3+y)(1-y) = 0 \Rightarrow y = 1, -3$
 $V''(1) = -4\pi$
 $V = \frac{1}{3}\pi (9-1)(3+1) = \frac{32}{3}\pi$ cubic units
The 2nd derivative test shows that this is a maximum volume

derivative test shows that this is a max

37) a)

$$w^{2} + d^{2} = 12^{2} \Rightarrow d^{2} = 144 - w^{2}$$

 $S = wd^{2} = w(144 - w^{2}) = 144w - w^{3}$ $S' = 144 - 3w^{2}$ $S'' = -6w$
 $144 - 3w^{2} = 0 \Rightarrow w = \sqrt{48}$ $S''(\sqrt{48}) = -6\sqrt{48}$
By the 2nd derivative test, the dimensions of the strongest beam

that can be cut from a 12-in diameter log are $4\sqrt{3}$ in. by $\sqrt{96} = 4\sqrt{6}$ in.

34)

38)

$$w^{2} + d^{2} = 12^{2} \Rightarrow w = \sqrt{144 - d^{2}}$$

$$S = wd^{3} = \sqrt{144 - d^{2}} (d^{3})$$

$$S' = \sqrt{144 - d^{2}} (3d^{2}) + d^{3} (\frac{-d}{\sqrt{144 - d^{2}}}) = \frac{3d^{2} (144 - d^{2}) - d^{4}}{\sqrt{144 - d^{2}}} = \frac{432d^{2} - 4d^{4}}{\sqrt{144 - d^{2}}}$$

$$\frac{432d^{2} - 4d^{4}}{\sqrt{144 - d^{2}}} = 0 \Rightarrow 432d^{2} - 4d^{4} = 0 \Rightarrow d = 0, \sqrt{108} = 6\sqrt{3}$$

$$S'' = \frac{\sqrt{144 - d^{2}} (864d - 16d^{3}) + (432d^{2} - 4d^{4}) (\frac{-d}{\sqrt{144 - d^{2}}})}{144 - d^{2}} \quad S'' (6\sqrt{3}) = -864\sqrt{3}$$

By the 2nd derivative test, the maximum stiffness occurs when the 12-in. diameter cylindrical log is cut into a beam that is $6\sqrt{3}$ in. by 6 in.

$$\frac{ds}{dt} = v(t) = -10\pi \sin \pi t \quad \frac{dv}{dt} = a(t) = -10\pi^2 \cos \pi t$$
$$-10\pi^2 \cos \pi t = 0 \Rightarrow \cos \pi t = 0 \Rightarrow t = \frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \frac{7}{2}$$
Maximum analysis have the set of the se

Maximum speed will be 10π cm/sec

Position :
$$s\left(\frac{1}{2}\right) = 0$$
 cm, $s\left(\frac{3}{2}\right) = 0$ cm, $s\left(\frac{5}{2}\right) = 0$ cm, $s\left(\frac{7}{2}\right) = 0$ cm
 $a\left(\frac{1}{2}\right) = 0$ cm/sec², $a\left(\frac{3}{2}\right) = 0$ cm/sec², $a\left(\frac{5}{2}\right) = 0$ cm/sec², $a\left(\frac{7}{2}\right) = 0$ cm/sec²

b)

$$\frac{da}{dt} = 10\pi^{3} \sin \pi t$$

$$10\pi^{3} \sin \pi t = 0 \Rightarrow \sin \pi t = 0 \Rightarrow t = 0, 1, 2, 3, 4$$
Position : $s(0) = 10$ cm, $s(1) = -10$ cm, $s(2) = 10$ cm, $s(3) = -10$ cm, $s(4) = 10$ cm
 $|v(0)| = 0$ cm/sec, $|v(1)| = 0$ cm/sec, $|v(2)| = 0$ cm/sec, $|v(3)| = 0$ cm/sec, $|v(4)| = 0$ cm/sec

40)

$$i' = -2\sin t + 2\cos t$$
 $i'' = -2\cos t - 2\sin t$
 $-2\sin t + 2\cos t = 0 \Rightarrow \cos t = \sin t \Rightarrow t = \frac{\pi}{4} + n\pi$, where *n* is an integer
 $i''\left(\frac{\pi}{4}\right) = -2\cos\left(\frac{\pi}{4}\right) - 2\sin\left(\frac{\pi}{4}\right) = -\sqrt{2} - \sqrt{2} = -2\sqrt{2}$
 $i = 2\cos\left(\frac{\pi}{4}\right) + 2\sin\left(\frac{\pi}{4}\right) = \sqrt{2} + \sqrt{2} = 2\sqrt{2}$ amps
By the 2nd derivative test, this value is a maximum.

41)

$$D = \sqrt{\left(x - \frac{3}{2}\right)^{2} + \left(\sqrt{x} - 0\right)^{2}} = \sqrt{x^{2} - 2x + \frac{9}{4}} \Rightarrow D^{2} = x^{2} - 2x + \frac{9}{4}$$

$$\frac{d}{dx} (D^{2}) = 2x - 2 \quad \frac{d^{2}}{dx^{2}} (D^{2}) = 2$$

$$2x - 2 = 0 \Rightarrow x = 1$$

$$D(1) = \sqrt{1^{2} - 2(1) + \frac{9}{4}} = \sqrt{\frac{5}{4}} = \frac{\sqrt{5}}{2}$$
By the 2nd derivative test, this distance is a minimum.

42)

$$D = \sqrt{\left(x-1\right)^{2} + \left(\sqrt{16-x^{2}}-\sqrt{3}\right)^{2}} = \sqrt{x^{2}-2x+1+16-x^{2}-2\sqrt{48-3x^{2}}-3} = \sqrt{-2x+14-2\sqrt{48-3x^{2}}}$$

$$\Rightarrow D^{2} = -2x + 14 - 2\sqrt{48-3x^{2}}$$

$$\frac{d}{dx}\left(D^{2}\right) = -2 + \frac{6x}{\sqrt{48-3x^{2}}} = \frac{6x - 2\sqrt{48-3x^{2}}}{\sqrt{48-3x^{2}}} \quad \frac{d^{2}}{dx^{2}}\left(D^{2}\right) = \frac{288 + 18x - 18x^{2}}{\left(48-3x^{2}\right)^{3/2}}$$

$$\frac{6x - 2\sqrt{48-3x^{2}}}{\sqrt{48-3x^{2}}} = 0 \Rightarrow 6x - 2\sqrt{48-3x^{2}} = 0 \Rightarrow 3x = \sqrt{48-3x^{2}} \Rightarrow 9x^{2} = 48 - 3x^{2} \Rightarrow x^{2} = 4 \Rightarrow x = 2$$

$$D(2) = \sqrt{\left(2-1\right)^{2} + \left(\sqrt{16-2^{2}}-\sqrt{3}\right)^{2}} = \sqrt{1+12-2\sqrt{36}+3} = 2$$

$$\frac{d^{2}}{dx^{2}}\left(D^{2}(2)\right) = \frac{288 + 18(2) - 18(2)^{2}}{\left(48-3(2)^{2}\right)^{3/2}} = \frac{7}{6}$$

By the 2^{nd} derivative test, the minimum distance is 2.

43)

$$f'(x) = 2x - 1$$
 $f''(x) = 2$
 $2x - 1 = 0 \Rightarrow x = \frac{1}{2}$
 $f\left(\frac{1}{2}\right) = \left(\frac{1}{2}\right)^2 - \frac{1}{2} + 1 = \frac{3}{4}$

By the 2nd derivative test, this value is a minimum. Therefore the function cannot be negative.

44)

$$f'(x) = -4\sin x - 2\sin 2x \quad f''(x) = -4\cos x - 4\cos 2x$$

$$-4\sin x - 2\sin 2x = 0 \Rightarrow -2\sin x = \sin 2x \Rightarrow -2\sin x = 2\sin x \cos x \Rightarrow \cos x = -1 \Rightarrow x = \pi$$

$$f''(\pi) = -4\cos\pi - 4\cos 2\pi = 4 - 4 = 0$$

$$f'\left(\frac{\pi}{2}\right) = -4\sin\left(\frac{\pi}{2}\right) - 2\sin 2\left(\frac{\pi}{2}\right) = -4 \quad f'\left(\frac{3\pi}{2}\right) = -4\sin\left(\frac{3\pi}{2}\right) - 2\sin 2\left(\frac{3\pi}{2}\right) = 4$$
The 2nd derivative test is incomplexive. The 1st derivative test shows that $x = \pi$ excepts a since π

The 2nd derivative test is inconclusive. The 1st derivative test shows that $x = \pi$ creates a minimum. The minimum value for y is 0, so the function will never be negative.

45) a) When the weights pass each other, $s_1 = s_2$ $2\sin t = \sin 2t \Rightarrow 2\sin t = 2\sin t \cos t \Rightarrow 2\sin t \cos t - 2\sin t = 0 \Rightarrow 2\sin t (\cos t - 1) = 0$ $\Rightarrow \sin t = 0, \cos t = 1 \Rightarrow t = n\pi, n \text{ is an positive integer.}$

b)

$$d = s_1 - s_2 = 2\sin t - \sin 2t = 2\sin t - 2\sin t \cos t$$

$$d' = 2\cos t - 2\sin t(-\sin t) - 2\cos t(\cos t) = 2\cos t + 2\sin^2 t - 2\cos^2 t$$

$$d'' = -2\sin t + 4\sin t(\cos t) + 4\cos t(\sin t) = -2\sin t + 8\sin t \cos t$$

$$2\cos t + 2\sin^2 t - 2\cos^2 t = 0 \Rightarrow 2\cos t + 2(1 - \cos^2 t) - 2\cos^2 t = 0$$

$$\Rightarrow 2\cos t + 2 - 4\cos^2 t = 0 \Rightarrow -2(2\cos^2 t - \cos t - 1) = 0 \Rightarrow 2(2\cos t + 1)(\cos t - 1) = 0$$

$$\Rightarrow \cos t = -\frac{1}{2} \text{ or } \cos t = 1 \Rightarrow t = \frac{2\pi}{3}, \frac{4\pi}{3} \text{ or } 0$$

$$d''\left(\frac{2\pi}{3}\right) = -2\sin\left(\frac{2\pi}{3}\right) + 8\sin\left(\frac{2\pi}{3}\right)\cos\left(\frac{2\pi}{3}\right) = -2\left(\frac{\sqrt{3}}{2}\right) + 8\left(\frac{\sqrt{3}}{2}\right)\left(-\frac{1}{2}\right) = -3\sqrt{3}$$

$$d''\left(\frac{4\pi}{3}\right) = -2\sin\left(\frac{4\pi}{3}\right) + 8\sin\left(\frac{4\pi}{3}\right)\cos\left(\frac{4\pi}{3}\right) = -2\left(\frac{\sqrt{3}}{2}\right) + 8\left(\frac{\sqrt{3}}{2}\right)\left(-\frac{1}{2}\right) = -3\sqrt{3}$$

$$d''(0) = -2\sin(0) + 8\sin(0)\cos(0) = 0$$

$$d\left(\frac{2\pi}{3}\right) = 2\sin\left(\frac{2\pi}{3}\right) - 2\sin\left(\frac{2\pi}{3}\right)\cos\left(\frac{2\pi}{3}\right) = 2\left(\frac{\sqrt{3}}{2}\right) - 2\left(\frac{\sqrt{3}}{2}\right)\left(-\frac{1}{2}\right) = \frac{3\sqrt{3}}{2}$$
Due the 2^{nd} derivative test, the divergent is generated when $t = 2^{2\pi} - x^{\frac{4\pi}{3}}$. The substant divergent is $\frac{3\sqrt{3}}{2}$

By the 2nd derivative test, the distance is greatest when $t = \frac{2\pi}{3}$ or $\frac{4\pi}{3}$. The greatest distance is $\frac{3\sqrt{3}}{2}$

46) a)

$$\sin t = \sin\left(t + \frac{\pi}{3}\right) \Rightarrow \sin t = \sin t \cos\left(\frac{\pi}{3}\right) + \cos t \sin\left(\frac{\pi}{3}\right) \Rightarrow \sin t = \frac{\sin t}{2} + \frac{\sqrt{3}}{2}\cos t$$

$$\Rightarrow \sin t = \sqrt{3}\cos t \Rightarrow \tan t = \sqrt{3} \Rightarrow t = \frac{\pi}{3}, \frac{4\pi}{3}$$

46) b)

$$d = \sin t - \sin\left(t + \frac{\pi}{3}\right) \Rightarrow d = \sin t - \sin t \cos\left(\frac{\pi}{3}\right) - \cos t \sin\left(\frac{\pi}{3}\right) \Rightarrow d = \sin t - \frac{\sin t}{2} - \frac{\sqrt{3}}{2} \cos t$$

$$\Rightarrow d = \frac{\sin t}{2} - \frac{\sqrt{3}}{2} \cos t$$

$$d' = \frac{\cos t}{2} + \frac{\sqrt{3}}{2} \sin t \quad d'' = -\frac{\sin t}{2} + \frac{\sqrt{3}}{2} \cos t$$

$$\frac{\cos t}{2} + \frac{\sqrt{3}}{2} \sin t = 0 \Rightarrow \sqrt{3} \sin t = -\cos t \Rightarrow \tan t = -\frac{1}{\sqrt{3}} \Rightarrow t = \frac{5\pi}{6}, \frac{11\pi}{6}$$

$$d' \left(\frac{5\pi}{6}\right) = -\frac{\sin\left(\frac{5\pi}{6}\right)}{2} + \frac{\sqrt{3}}{2} \cos\left(\frac{5\pi}{6}\right) = -\frac{1}{4} + \frac{\sqrt{3}}{2} \left(-\frac{\sqrt{3}}{2}\right) = -1$$

$$d'' \left(\frac{11\pi}{6}\right) = -\frac{\sin\left(\frac{11\pi}{6}\right)}{2} + \frac{\sqrt{3}}{2} \cos\left(\frac{11\pi}{6}\right) = \frac{1}{4} + \frac{\sqrt{3}}{2} \left(\frac{\sqrt{3}}{2}\right) = 1$$

$$d = \sin\left(\frac{5\pi}{6}\right) - \sin\left(\frac{5\pi}{6} + \frac{\pi}{3}\right) = \frac{1}{2} - \sin\left(\frac{7\pi}{6}\right) = \frac{1}{2} - \left(-\frac{1}{2}\right) = 1$$

By the 2nd derivative test, this is a maximum value.

46) c)

$$d'' = -\frac{\sin t}{2} + \frac{\sqrt{3}}{2}\cos t$$

$$-\frac{\sin t}{2} + \frac{\sqrt{3}}{2}\cos t = 0 \Rightarrow \sqrt{3}\cos t = \sin t \Rightarrow \tan t = \sqrt{3} \Rightarrow t = \frac{\pi}{3}, \frac{4\pi}{3}$$

47)	
-----	--