1) a) Yes, $f(x)$ is continuous on $[0,1]$ and differentiable on $(0,1)$
b) $2 c+2=\frac{2-(-1)}{1-0} \Rightarrow 2 c+2=3 \Rightarrow c=\frac{1}{2}$
2) a) Yes, $f(x)$ is continuous on $[0,1]$ and differentiable on $(0,1)$
b) $\frac{2}{3 c^{1 / 3}}=\frac{1-0}{1-0} \Rightarrow 3 c^{1 / 3}=2 \Rightarrow c^{1 / 3}=\frac{2}{3} \Rightarrow c=\frac{8}{27}$
3) a) No, there is a vertical asymptote at $x=0$
4) a) No, there is a corner at $x=1$
5) a) Yes, $f(x)$ is continuous on $[-1,1]$ and differentiable on $(-1,1)$
b) $\frac{1}{\sqrt{1-c^{2}}}=\frac{\frac{\pi}{2}-\left(-\frac{\pi}{2}\right)}{1-(-1)} \Rightarrow \sqrt{1-c^{2}}=\frac{2}{\pi} \Rightarrow 1-c^{2}=\frac{4}{\pi^{2}} \Rightarrow c^{2}=1-\frac{4}{\pi^{2}} \Rightarrow c= \pm \sqrt{1-\frac{4}{\pi^{2}}} \approx \pm 0.771$
6) a) Yes, $f(x)$ is continuous on $[2,4]$ and differentiable on $(2,4)$
b) $\frac{1}{c-1}=\frac{\ln 3-\ln 1}{3-1} \Rightarrow \frac{1}{c-1}=\frac{\ln 3}{2} \Rightarrow c-1=\frac{2}{\ln 3} \Rightarrow c=\frac{2+\ln 3}{\ln 3} \approx 2.820$
7) a) No, $f(x)$ has a discontinuity at $\frac{\pi}{2}$
8) a) No, $f(x)$ has a discontinuity at 1
9) a) Slope of line $A B$: $m=\frac{2.5-2.5}{2-0.5}=0$.

Equation: $y-2.5=0(x-2)$ or $y=2.5$
b) $1-\frac{1}{c^{2}}=0 \Rightarrow c^{2}=1 \Rightarrow c=1 \quad f(1)=2 \quad y-2=0(x-1) \Rightarrow y=2$
10) a) Slope of line $A B$: $m=\frac{\sqrt{2}-0}{3-1}=\frac{\sqrt{2}}{2}$.

Equation: $y-0=\frac{\sqrt{2}}{2}(x-1)$ or $y=\frac{\sqrt{2}}{2} x-\frac{\sqrt{2}}{2}$
b) $\frac{1}{2 \sqrt{c-1}}=\frac{\sqrt{2}}{2} \Rightarrow \sqrt{2 c-2}=1 \Rightarrow 2 c-2=1 \Rightarrow c=\frac{3}{2} \quad f\left(\frac{3}{2}\right)=\frac{\sqrt{2}}{2} \quad y-\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{2}\left(x-\frac{3}{2}\right) \Rightarrow y=\frac{\sqrt{2}}{2} x-\frac{\sqrt{2}}{4}$
15) $f^{\prime}(x)=5-2 x \quad 5-2 x=0 \Rightarrow x=\frac{5}{2}$

x	0	$\frac{5}{2}$	3
$f^{\prime}(x)$	5	0	-1

The function increases on $\left(-\infty, \frac{5}{2}\right]$ and decreases on $\left[\frac{5}{2}, \infty\right)$
There is an absolute maximum value of $\frac{25}{4}$ at $x=\frac{5}{2}$
16) $f^{\prime}(x)=2 x-1 \quad 2 x-1=0 \Rightarrow x=\frac{1}{2}$

x	0	$\frac{1}{2}$	1
$f^{\prime}(x)$	-1	0	1

The function decreases on $\left(-\infty, \frac{1}{2}\right]$ and increases on $\left[\frac{1}{2}, \infty\right)$
There is an absolute minimum value of $-\frac{49}{4}$ at $x=\frac{1}{2}$
17) $f^{\prime}(x)=\frac{-2}{x^{2}} \quad \frac{-2}{x^{2}}$ never equals 0 , but is undefined at $x=0$

x	-1	0	1
$f^{\prime}(x)$	-2	DNE	-2

The function decreases on $(-\infty, 0)$ and $(0, \infty)$
There are no extreme values
18) $f^{\prime}(x)=\frac{-2}{x^{3}} \quad \frac{-2}{x^{3}}$ never equals 0 , but is undefined at $x=0$

x	-1	0	1
$f^{\prime}(x)$	2	DNE	-2

The function increases on $(-\infty, 0)$ and decreases on $(0, \infty)$
There are no extreme values
19) $f^{\prime}(x)=2 e^{2 x} \quad 2 e^{2 x}$ never equals 0

The function increases on $(-\infty, \infty)$
There are no extreme values
20) $f^{\prime}(x)=-0.5 e^{-0.5 x} \quad-0.5 e^{-0.5 x}$ never equals 0

The function decreases on $(-\infty, \infty)$
There are no extreme values
21) Domain of $f:[-2, \infty) \quad f^{\prime}(x)=\frac{-1}{\sqrt{x+2}} \quad \frac{-1}{\sqrt{x+2}}$ never equals 0 , but is undefined when $x \leq-2$

x	-2	-1
$f^{\prime}(x)$	DNE	-1

The function decreases on $[-2, \infty)$
There is an absolute maximum value of 4 at $x=-2$
22) $f^{\prime}(x)=4 x^{3}-20 x \quad 4 x^{3}-20 x=0 \Rightarrow 4 x\left(x^{2}-5\right)=0 \Rightarrow x=0, \pm \sqrt{5}$

x	-3	$-\sqrt{5}$	-1	0	1	$\sqrt{5}$	3
$f^{\prime}(x)$	-48	0	16	0	-16	0	48

The function decreases on $(-\infty,-\sqrt{5}]$ and $[0, \sqrt{5}]$. The function increases on $[-\sqrt{5}, 0]$ and $[\sqrt{5}, \infty)$ There is an absolute minimum value of -16 at $x=-\sqrt{5}$ and at $x=\sqrt{5}$.
There is a local maximum of 9 when $x=0$
23) Domain of $f:(-\infty, 4]$
$f^{\prime}(x)=\frac{-x}{2 \sqrt{4-x}}+\sqrt{4-x}=\frac{8-3 x}{2 \sqrt{4-x}} \quad \frac{8-3 x}{2 \sqrt{4-x}}=0 \Rightarrow x=\frac{8}{3} ; f^{\prime}(x)$ is undefined when $x \geq 4$

x	-3	$-\sqrt{5}$	-1	0	1	$\sqrt{5}$	3
$f^{\prime}(x)$	-48	0	16	0	-16	0	48

The function decreases on $(-\infty,-\sqrt{5}]$ and $[0, \sqrt{5}]$. The function increases on $[-\sqrt{5}, 0]$ and $[\sqrt{5}, \infty)$ There is an absolute minimum value of -16 at $x=-\sqrt{5}$ and at $x=\sqrt{5}$.
There is a local maximum of 9 when $x=0$
24) $f^{\prime}(x)=x^{1 / 3}(1)+\frac{x+8}{3 x^{2 / 3}}=\frac{4 x+8}{3 x^{2 / 3}} \quad \frac{4 x+8}{3 x^{2 / 3}}=0 \Rightarrow x=-2 ; f^{\prime}(x)$ is undefined when $x=0$

x	-3	-2	-1	0	1
$f^{\prime}(x)$	$\frac{-4 \sqrt[3]{3}}{9}$	0	$\frac{4}{3}$	DNE	4

The function decreases on $(-\infty,-2]$. The function increases on $[-2, \infty)$
There is an absolute minimum value of $6 \sqrt[3]{-2} \approx-7.560$ at $x=-2$.
25) $f^{\prime}(x)=\frac{\left(x^{2}+4\right)(-1)-(-x)(2 x)}{\left(x^{2}+4\right)^{2}}=\frac{3 x^{2}-4}{\left(x^{2}+4\right)^{2}} \quad \frac{3 x^{2}-4}{\left(x^{2}+4\right)^{2}}=0 \Rightarrow x= \pm \sqrt{\frac{4}{3}}$

x	-2	$-\sqrt{\frac{4}{3}}$	0	$\sqrt{\frac{4}{3}}$	2
$f^{\prime}(x)$	$\frac{1}{8}$	0	$-\frac{1}{4}$	0	$\frac{1}{8}$

The function increases on $\left(-\infty,-\sqrt{\frac{4}{3}}\right]$ and $\left[\sqrt{\frac{4}{3}}, \infty\right)$. The function decreases on $\left[-\sqrt{\frac{4}{3}}, \sqrt{\frac{4}{3}}\right]$
There is a local minimum value of $-\frac{1}{4}$ at $x=0$ and local maximum values of $\frac{1}{8}$ at $x=-2$ and $x=2$.
26) $f^{\prime}(x)=\frac{\left(x^{2}-4\right)(1)-(x)(2 x)}{\left(x^{2}-4\right)^{2}}=\frac{-x^{2}-4}{\left(x^{2}-4\right)^{2}} \frac{-x^{2}-4}{\left(x^{2}-4\right)^{2}}$ never equals 0 and is undefined at $x= \pm 2$

x	-3	-2	0	2	3
$f^{\prime}(x)$	$-\frac{13}{25}$	DNE	$-\frac{1}{4}$	DNE	$-\frac{13}{25}$

The function decreases on $(-\infty,-2),(-2,2)$, and $(2, \infty)$. The function never increases.
There are no extreme values.
27) $f^{\prime}(x)=3 x^{2}-2+2 \sin x \quad 3 x^{2}-2+2 \sin x=0 \Rightarrow x \approx-1.126,0.559$

x	-2	-1.126	0	0.559	1
$f^{\prime}(x)$	8.181	0	-2	0	2.683

The function increases on $(-\infty,-1.126]$ and $[0.559, \infty)$ and decreases on $[-1.126,0.559]$.
There is a local maximum of approximately -0.036 at $x \approx-1.126$, and a local minimum of approximately -2.639 at $x \approx 0.559$.
28) $f^{\prime}(x)=2-\sin x \quad 2-\sin x$ never equals 0

x	$-\pi / 2$	0	$\pi / 2$
$f^{\prime}(x)$	3	2	1

The function increases on $(-\infty, \infty)$. There are no extreme values.

