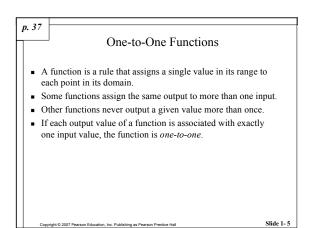
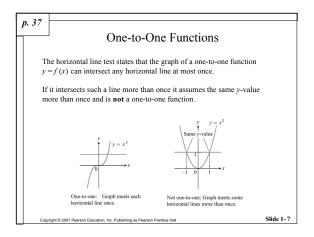
## What you'll learn about... • One-to-One Functions

....and why

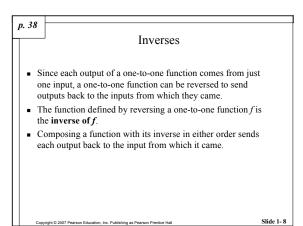
- Logarithmic functions are used in many applications including
- InversesFinding Inverses
- applica
  - finding time in investment problems.
- Logarithmic FunctionsProperties of Logarithms


Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Prentice Hall

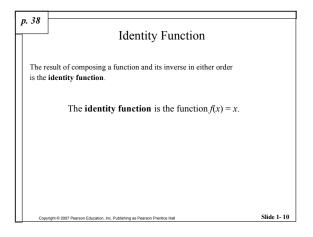
Applications


## EQ:

What are logarithmic functions and how can we use them to solve applications?


Slide 1-4

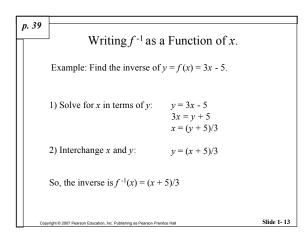



| p. 37 | One-to-One Functions                                                                    |           |
|-------|-----------------------------------------------------------------------------------------|-----------|
|       | A function $f(x)$ is one-to-one on a domain D if $f(a) \neq f(b)$ whenever $a \neq b$ . |           |
|       |                                                                                         |           |
|       | right © 2007 Pearson Education, Inc. Publishing as Pearson Prentice Hall                | Slide 1-6 |

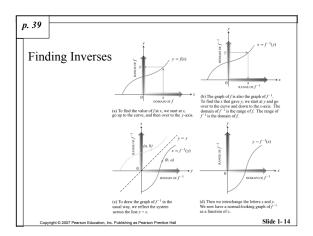




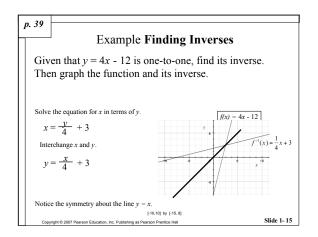



| - |                                                                                     |                                                                                                 |           |  |  |
|---|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------|--|--|
|   | p. 38                                                                               |                                                                                                 |           |  |  |
| F |                                                                                     | Inverses                                                                                        |           |  |  |
|   |                                                                                     |                                                                                                 |           |  |  |
|   | The symbol for the inverse of $f$ is $f^{-1}$ , read " $f$ inverse."                |                                                                                                 |           |  |  |
|   | The -1 in $f^{-1}$ is not an exponent; $f^{-1}(x)$ does not mean $\frac{1}{f(x)}$ . |                                                                                                 |           |  |  |
|   |                                                                                     | $(g \circ f)(x) = (g \circ f)(x)$ , then f and g are inverses of one another wise they are not. | ner;      |  |  |
|   |                                                                                     |                                                                                                 |           |  |  |
|   |                                                                                     |                                                                                                 |           |  |  |
|   |                                                                                     |                                                                                                 |           |  |  |
|   | Сору                                                                                | right © 2007 Pearson Education, Inc. Publishing as Pearson Prentice Hall                        | Slide 1-9 |  |  |

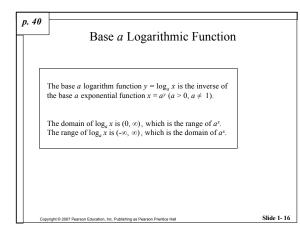



p. 38 Example Inverses Determine via composition if  $f(x) = \sqrt{x}$  and  $g(x) = x^2$ , x > 0, are inverses.  $(f \circ g)(x) = f(x^2) = \sqrt{x^2} = |x| = x \text{ (since } x > 0)$  $(g \circ f)(x) = g(\sqrt{x}) = (\sqrt{x})^2 = x$ Since  $(f \circ g)(x) = (g \circ f)(x) = x$ , the functions f and g ARE inverses of each other. Slide 1-11

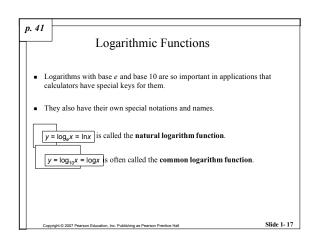
opyright © 2007 Pearson Education, Inc. Publishing as Pearson Prentice Hall

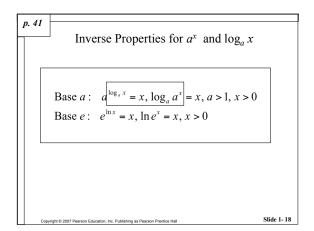

| p. 3 | Writing $f^{-1}$ as a Function of $x$ .                                                                                       |                 |
|------|-------------------------------------------------------------------------------------------------------------------------------|-----------------|
|      | Solve the equation $y = f(x)$ for x in terms of y.<br>Interchange x and y. The resulting formula<br>will be $y = f^{-1}(x)$ . |                 |
|      | Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Prentice Hall                                                  | <br>Slide 1- 12 |

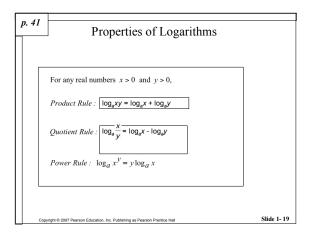




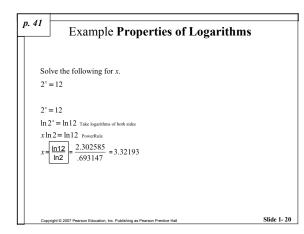


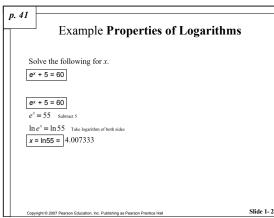



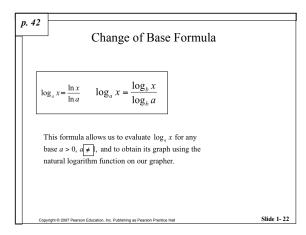





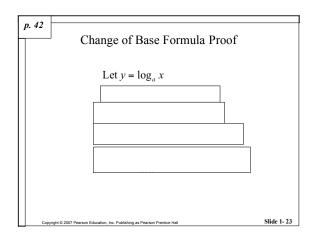



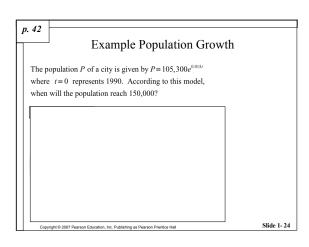








Slide 1-21







